Mountains of Opportunity

Picture by Susan Eustis

WinterGreen Research, Inc.
Lexington, Massachusetts

www.wintergreenresearch.com 781 853 5078
WinterGreen Research, INC.

CHECK OUT THESE KEY TOPICS

Rehabilitation Robots Support Stroke Recovery to Achieve Lifestyle

<table>
<thead>
<tr>
<th>Rehabilitation Robots</th>
<th>Rehabilitation Robots</th>
<th>Robotic-Assisted Minimally Invasive Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke Protocols</td>
<td>Software</td>
<td>Invasive Surgery</td>
</tr>
<tr>
<td>Active Prostheses</td>
<td>Hip Rehabilitation</td>
<td>Robotic Surgical System</td>
</tr>
<tr>
<td>Exoskeletons</td>
<td>Anti-Gravity Treadmill</td>
<td>Medical / Surgical Delivery Robots</td>
</tr>
<tr>
<td>Robotic Technologies</td>
<td>Continuous Positive Motion CPM</td>
<td>Surgical Assistive Technology</td>
</tr>
<tr>
<td>Leverage Neuroplasticity</td>
<td>Spinal Cord Injury Rehabilitation</td>
<td>Hospital Robots</td>
</tr>
<tr>
<td>Wearable Robotics</td>
<td></td>
<td>Robotic Surgery Equipment</td>
</tr>
<tr>
<td>Strengthen The Upper Extremity</td>
<td></td>
<td>Surgical Robot Applications</td>
</tr>
<tr>
<td>Strengthen The Lower Extremity</td>
<td></td>
<td>Next Generation Robotic Surgery</td>
</tr>
<tr>
<td>Hand Rehabilitation</td>
<td>Abdominal Surgical Robotics</td>
<td>Flexible Robot Platform, Minimally Invasive Surgery MIS</td>
</tr>
<tr>
<td>Physical Therapy Automation</td>
<td>Surgical Robots</td>
<td></td>
</tr>
<tr>
<td>Recovery After Hip Injury</td>
<td>Medical Devices</td>
<td></td>
</tr>
<tr>
<td>Wrist Rehabilitation</td>
<td>Healthcare Robotics</td>
<td></td>
</tr>
<tr>
<td>Stroke Rehabilitation</td>
<td>Surgical Enabling Technology</td>
<td></td>
</tr>
</tbody>
</table>

Rehabilitation Robots Market Analysis:

LEXINGTON, Massachusetts (January 7, 2019) – WinterGreen Research announces that it has published a new study Rehabilitation Robots: Market Shares, Strategy, and Forecasts, Worldwide, 2019 to 2025. The 2019 study has 564 pages, 269 tables and figures. Worldwide Rehabilitation Robot markets are expected to achieve significant growth as robots replace much of the human work in physical therapy.

The robots are steadier, make fewer mistakes, support treatment for longer durations, and decrease the cost of rehabilitation for many conditions. The robots permit a more accurate rehabilitation routine for any specific condition than is possible with human physical therapy in many cases.

REPORT # SH28084999 564 PAGES 269 TABLES AND FIGURES 2019

$4,400 SINGLE COPY -- $8,800 WEB SITE POSTING
Robotics has tremendous ability to reduce disability and lead to better outcomes for patients with stroke. With the use of rehabilitation robots, patient recovery of function is able to be more substantial than what is achieved now. Whereas traditional rehabilitation with a human therapist goes on for a few weeks, people using robots are able to make continued progress in regaining functionality even years after an injury or stroke.

It is a question of cost. While insurance pays for a small amount of rehabilitation needed, generally provided by a human therapist, using a robot is far less costly process, and can be effective over the long term, even without reimbursement. Marketing has a tremendous effect in convincing people that they can achieve improvements from rehabilitation processes even after years of effort.

Rehabilitation robotics devices are used for assisting performance of sensorimotor functions. Devices help arm, hand, leg rehabilitation by supporting repetitive motion that builds neurological pathways to support use of the muscles. Development of different robotic schemes for assisting therapeutic training is innovative.

According to Susan Eustis, principal author of the team that developed the market research study, “Robotic therapy stimulus of upper limbs provides an example of the excellent motor recovery after stroke that can be achieved using rehabilitation robots.” Lower limb systems and exoskeleton systems provide wheelchair bound patients the ability to get out of a wheelchair.

No company dominates the entire rehabilitation robot market sector. The products that work are still emerging as commercial devices. All the products that are now commercially viable are positioned to achieve significant staying power in the market long term, providing those companies that offer them with a possibility for long term leadership position in the market.

Robotic rehabilitation equipment is mostly used in rehabilitation clinical facilities. There is a huge opportunity for launching a homecare equipment market if it is done through sports clubs rather than through clinical facilities. People expect insurance to pay for medical equipment but are willing to spend bundles on sports trainer equipment for the home. Rehabilitation robots can help stroke patients years after an event, so it makes a difference if someone keeps working to improve their functioning.

Vendors will very likely have to develop a strong rehabilitation robotic market presence as these devices evolve a homecare aspect. The expense of nursing home rehabilitation has been very high, limiting the use of rehabilitation to a few weeks or months at the most.

Rehabilitation robots realistically extend the use of automated process for rehabilitation in the home. The availability of affordable devices that improve mobility is not likely to go unnoticed by the sports clubs and the baby boomer generation, now entering the over 65 age group and seeking to maintain lifestyle.
As clinicians realize that more gains can be made by using rehabilitation robots in the home, the pace of acquisitions will likely pick up.

Rehabilitation robot market size at $641 million in 2018 is expected grow dramatically to reach $6.4 billion by 2025. Exoskeleton markets will be separate and additive to this market. A separate exoskeleton market will create more growth. Market growth is a result of the effectiveness of robotic treatment of muscle difficulty. The usefulness of the rehabilitation robots is increasing. Doing more sophisticated combinations of exercise have become more feasible as the technology evolves. Patients generally practice 1,000 varied movements per session. With the robots, more sessions are possible.

WinterGreen Research is an independent research organization funded by the sale of market research studies all over the world and by the implementation of ROI models that are used to calculate the total cost of ownership of equipment, services, and software. The company has 35 distributors worldwide, including Global Information Info Shop, Market Research.com, Research and Markets, electronics.ca, and Thompson Financial. It conducts its business with integrity.

The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.

WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.

Companies Profiled

Market Leaders

DJO Global
DIH / Hocoma
Performance Health / Patterson Medical
AlterG
Ekso Bionics
ReWalk Robotics
Myomo
Bionik / Interactive Motion Technologies
Intuitive Surgical

Selected Market Participants

Berkley Robotics and Human Engineering Laboratory
Biodex
Bioness
Catholic University of America
Biodex
Bioness
DJO Global
Fanuc
Focal Meditech
Furniss
Hocoma
Honda Motor
Instead Technologies
Invacare
iRobot
Interactive Motion Technologies
(IMT)
InMotion Robots
Interaxon
KDM
Kinova
KLC Services
Medi
MRISAR
Orthocare Innovations
Patterson
ProMed Products Xpress
Reha-Stim
Robotdalen
RSL Steeper
RU Robots
Secom
Sunrise Medical
Touch Bionics
Tyromotion
Report Methodology

This is the 808th report in a series of primary market research reports that provide forecasts in communications, telecommunications, the Internet, computer, software, telephone equipment, health equipment, and energy. Automated process and significant growth potential are a priority in topic selection. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. They are supported by a team, each person with specific research tasks and proprietary automated process database analytics. Forecasts are based on primary research and proprietary data bases.

The primary research is conducted by talking to customers, distributors and companies. The survey data is not enough to make accurate assessment of market size, so WinterGreen Research looks at the value of shipments and the average price to achieve market assessments. Our track record in achieving accuracy is unsurpassed in the industry. We are known for being able to develop accurate market shares and projections. This is our specialty.

The analyst process is concentrated on getting good market numbers. This process involves looking at the markets from several different perspectives, including vendor shipments. The interview process is an essential aspect as well. We do have a lot of granular analysis of the different shipments by vendor in the study and addenda prepared after the study was published if that is appropriate.

Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participant in the segment. Installed base analysis and unit analysis is based on interviews and an information search. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, opinion leaders, and companies seeking to develop measurable market share.

Over 200 in depth interviews are conducted for each report with a broad range of key participants and industry leaders in the market segment. We establish accurate market forecasts based on economic and market conditions as a base. Use input/output ratios, flow charts, and other economic methods to quantify data. Use in-house analysts who meet stringent quality standards.
Interviewing key industry participants, experts and end-users is a central part of the study. Our research includes access to large proprietary databases. Literature search includes analysis of trade publications, government reports, and corporate literature.

Findings and conclusions of this report are based on information gathered from industry sources, including manufacturers, distributors, partners, opinion leaders, and users. Interview data was combined with information gathered through an extensive review of internet and printed sources such as trade publications, trade associations, company literature, and online databases. The projections contained in this report are checked from top down and bottom up analysis to be sure there is congruence from that perspective.

The base year for analysis and projection is 2018. With 2018 and several years prior to that as a baseline, market projections were developed for 2019 through 2025. These projections are based on a combination of a consensus among the opinion leader contacts interviewed combined with understanding of the key market drivers and their impact from a historical and analytical perspective.

The analytical methodologies used to generate the market estimates are based on penetration analyses, similar market analyses, and delta calculations to supplement independent and dependent variable analysis. All analyses are displaying selected descriptions of products and services.

The report provides an executive-level blueprint of the rehabilitation robot market beginning with the definition of the market dynamics. The analysis classifies the market in terms of products, application, and key geographic regions. Presenting a detailed value chain analysis, the study evaluates the set of region-specific approaches forged by the industry. To determine the market potential for rehabilitation robots in the international scenario, the study delves into the competitive landscape and development landscape exhibited by the key geographic regions covering ” U.S., Europe, Japan, China and India, Asia Pacific Remaining, and the Rest of World “

The report’s analysis is based on technical data and industry figures sourced from the most reputable databases. Other aspects that will prove especially beneficial to readers of the report are: investment feasibility analysis, recommendations for growth, investment return analysis, trends analysis, opportunity analysis, and SWOT analyses of competing companies. With the help of inputs and insights from technical and marketing experts, the report presents an objective assessment of the market.
This report also presents product specification, manufacturing process, and product cost structure etc. Production is separated by regions, technology and applications. Analysis also covers upstream raw materials, equipment, Downstream client survey, Marketing channels, Industry development trend and proposals. In the end, the report includes Exoskeleton new project SWOT analysis, Investment feasibility analysis, Investment return analysis, and Development trend analysis. In conclusion, it is a deep research report on Global robots industry. Here, we express our thanks for the support and assistance from industry chain related technical experts and marketing engineers during Research Team’s survey and interviews.

Other important aspects that have been meticulously studied in the market report are: Demand and supply dynamics, import and export scenario, industry processes and cost structures, and major R&D initiatives. The new opportunities they present to market players have been mentioned in the report.

This research includes referencde to an ROI model that is part of a series that provides IT systems financial planners access to information that supports analysis of all the numbers that impact management of a product launch or large and complex data center. The methodology used in the models relates to having a sophisticated analytical technique for understanding the impact of workload on processor consumption and cost.

WinterGreen Research has looked at the metrics and independent research to develop assumptions that reflect the actual anticipated usage and cost of systems. Comparative analyses reflect the input of these values into models. The variables and assumptions provided in the market research study and the ROI models are based on extensive experience in providing research to large enterprise organizations and data centers. The ROI models are useful for comparing products from different manufacturers, for example servers from different manufacturers, Systems z models from IBM, and labor costs by category around the world. This information has been developed from WinterGreen research proprietary data bases constructed as a result of preparing market research studies that address the software, energy, healthcare, telecommunicatons, and hardware businesses.

YOU MUST HAVE THIS STUDY
The study is designed to give a comprehensive overview of the Rehabilitation Robots market segment. Research represents a selection from the mountains of data available of the most relevant and cogent market materials, with selections made by the most senior analysts. Commentary on every aspect of the market from independent analysts creates an independent perspective in the evaluation of the market. In this manner the study presents a comprehensive overview of what is going on in this market, assisting managers with designing market strategies likely to succeed.
1.4 Exoskeleton Able-Bodied Industrial Applications
1.5 Restoring Physical Function Through Neuro-Rehabilitation After Stroke
1.5.1 Traumatic Brain Injury Program
1.5.2 Concussion Program
1.5.3 Hospital Stroke Programs Rapid Response to Create Better Outcomes
1.5.4 Stroke Response Process Leverage Protocols that Implement Streamlined Timely Treatment

2. REHABILITATION ROBOT MARKET SHARES AND MARKET FORECASTS
2.1 Rehabilitation Robot Market Driving Forces
2.1.1 Rehabilitation Robots Assistive Devices
2.1.2 Rehabilitation Robots Decrease the Cost of Recovery
2.1.3 Rehabilitation Robot Medical Conditions Treated
2.1.4 Robotic Modules for Disability Therapy
2.1.5 Wearable Robotics for Disability Therapy
2.1.6 Rehabilitation Robots Leverage Principles Of Neuroplasticity
2.2 Rehabilitation Robot Market Shares
2.2.1 DJO Global Business Activities
2.2.2 AlterG Bionic Leg Customer Base
2.2.3 Myomo
2.2.4 Performance Health / Patterson Medical
2.2.5 DIH International Limited / Hocoma
2.2.6 Bionik Laboratories / Interactive Motion Technologies (IMT)
2.2.7 Hocoma Robotic Rehabilitation
2.2.8 Hocoma Helping Patients To Grasp The Initiative And Reach Towards Recovery
2.2.9 Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
2.2.10 Rewalk
2.2.11 Karman Xo-202 Standing Wheelchair Power Stand Power Drive
2.3 Rehabilitation Robot Market Share Unit Analysis
2.3.1 Medical Rehabilitation Robot Market Analysis
2.4 Rehabilitation Robot Market Forecasts
2.4.1 Rehabilitation Robot Unit Shipments
2.4.2 Rehabilitation Robots Market Segments: Lower Extremities, Upper Extremities, Neurological Training, Exoskeleton, Stroke CPM
2.5 Rehabilitation Robot And Motorized CPM Equipment
2.6 Global Exoskeleton Market
2.7 Rehabilitation Robotics Prices
2.7.1 Danniflex 480 Lower Limb CPM Unit
2.7.2 Patterson Kinetec CPM
2.7.3 Chattanooga Atromot
2.7.4 Ekso Bionics
2.7.5 Interaxon Muse
2.8 Rehabilitation Robotics Regional Analysis
2.8.1 Ekso Bionics Regional Presence

3. REHABILITATION ROBOTS MARKET METRICS AND DEVICES
3.1 Upper and Lower limb Stroke Rehabilitation Devices
3.1.1 Upper Limb Stroke Rehabilitation Devices
3.2 Rehabilitation Robot Market Metrics
3.2.1 Types of Conditions and Rehabilitation Treatment by Condition
3.2.2 Clinical Evidence and Reimbursement
3.2.3 Stroke149
3.2.4 Early Rehab After Stroke
3.2.5 Multiple Sclerosis
3.2.6 Knee-Replacement Surgery
3.2.7 Medicare Coverage of CPM
3.2.8 Hip
3.2.9 Gait Training
3.2.10 Sports Training
3.2.11 Severe Injury or Amputation
3.2.12 Neurological Disorders 155
3.2.13 Recovery After Surgery 155
3.2.14 Conditions with Severe Extremity Pain / Number of Patients 156

3.3 Types of Rehabilitation Robots and Conditions Treated 157
3.3.1 Gait Training Devices / Unweighting Systems 158
3.3.2 Euro-Rehabilitation 158
3.3.3 Prostheses 160
3.3.4 Motorized Physiotherapy CPM (Continuous Passive Motion), CAM Therapy (Controlled Active Motion) and the Onboard Protocols 161
3.3.5 Gait Training Devices / Unweighting Systems / Automated Treadmills 161
3.3.6 Rehabilitation Therapy Robotics 161
3.3.7 Upper Limb Robotic Rehabilitation 162
3.3.8 Shoulder Biomechanics 163
3.3.9 Exoskeletons 164
3.3.10 Exoskeleton-Based Rehabilitation 165
3.3.11 End-effectors 166
3.3.12 Mobility Training Level Of Distribution 166
3.3.13 Rehabilitation Robots Cost-Benefit-Considerations 167
3.3.14 Rehabilitation Systems 167
3.3.15 Robotic Therapeutic Stroke Rehabilitation 168

3.4 Disease Incidence and Prevalence Analysis 168
3.4.1 Aging Of The Population 168
3.4.2 Chronic Disease Rehabilitation 168

3.5 Service Robots 169
3.5.1 Next Generation Personal And Service Robotics 170
3.5.2 Focal Meditech BV Mealtime Support and Stress Reduction: Hand Function 170
3.5.3 Rehabilitation of Hip Injuries 171
3.5.4 iRobot / InTouch Health 172

3.6 Neurological Training 174
3.6.1 Neuro-Rehabilitation 174

3.7 Interaxon 174
3.7.1 Interaxon Muse: Brainwave Category Biometrics 177
3.7.2 InteraxXon Motivates Brain Activity 179
3.7.3 Interaxon Muse Improves Response To Stress, Lowers Blood Pressure 179
3.7.4 Interaxon Muse Gives Self-Control 180
3.7.5 Interaxon Muse Can Improve Emotional State 180
3.7.6 Interaxon Muse Extended Use Lasting Results 181
3.7.7 Interaxon Muse Types of Feedback 182

3.8 Active Prostheses 182
3.8.1 Neuronal-Device Interfaces 183

3.9 Pererro - Switch | Access | Control 183
3.9.1 Pererro+ 184
3.9.2 RSL Steeper V3 Myoelectric Hand 185

3.10 Humanware In-Home Rehabilitation 188
3.10.1 Muscle Memory 188

3.11 Rewalk 189
3.12 Permobil F5 Corpus VS Stand Sequence 192
3.13 Karman Xo-202 Standing Wheelchair Power Stand Power Drive 193
3.14 Berkeley Robotics Laboratory Exoskeletons 194
3.15 Exoskeleton Designed by CAR 195
3.16 CAREX Upper Limb Robotic Exoskeleton 197
3.17 Egto Tech 198
3.17.1 Egto Tech Luna Dynamic Resistance 199
3.17.2 Egto Tech Luna Objective Diagnostics 199

3.18 Motorized Physiotherapy CPM Continuous Passive Motion and Onboard Protocols 199
3.18.1 Movement of Synovial Fluid To Allow For Better Diffusion Of Nutrients Into Damaged Cartilage 201

3.19 Global Medical 202

REPORT # SH28084999 564 PAGES 269 TABLES AND FIGURES 2019
$4,400 SINGLE COPY -- $8,800 WEB SITE POSTING
3.20 Furniss Corporation
3.20.1 Furniss Corporation Continuous Passive Motion DC2480 Knee CPM
3.21 Danniflex
3.21.1 Danniflex 480 Lower Limb CPM Unit
3.22 Rehab-Robotics Company
3.22.1 Rehab-Robotics Hand of Hope
3.22.2 Rehab-Robotics Hand & Arm Training
3.23 Bioxtreme
3.24 Corbys
3.24.1 Corbys System
3.25 Swtoteck Motion Maker
4. REHABILITATION ROBOTS TECHNOLOGY
4.1 Robotic Actuator Energy
4.1.1 Elastic Actuators
4.1.2 InMotion Robots Technology
4.2 Human Motor Error Enhancement Technology
4.2.1 Enhancing a Motor Error Improves Motor Skills
4.2.2 Adaptation to Error Enhancing Forces
4.2.3 Bioxtreme’s Error Enhancement Technology Potential Applications
4.3 Rehabilitation Robotic Risk Mitigation
4.4 Rehabilitation Robot Multi-Factor Solutions
4.4.1 Biometallic Materials Titanium (Ti) and its Alloys
4.5 Berkley Robotics and Human Engineering Laboratory
4.6 Rehabilitation Robot Automated Technique
4.6.1 InMotion Robots Technology
4.7 HEXORR: Hand EXOskeleton Rehabilitation Robot
4.8 ARMin: Upper Extremity Robotic Therapy
4.9 HandSOME: Hand Spring Operated Movement Enhancer
4.10 Cognitive Science
4.11 Lopes Gait Rehabilitation Device
4.12 Restoration of Sensation To A Paralyzed Man’s Arm
4.13 Artificial Muscle
4.14 ReWalk™ Exoskeleton Suit
5. REHABILITATION ROBOT COMPANY PROFILES
5.1 AlterG
5.1.1 AlterG M320 Anti-Gravity Treadmill
5.1.2 AlterG® Anti-Gravity Treadmill in Action
5.1.3 AlterG: PK100 PowerKnee
5.1.4 AlterG Bionic Leg
5.1.5 Alterg / Tibion Bionic Leg
5.1.6 AlterG Bionic Leg Customer Base
5.1.7 AlterG M300
5.1.8 AlterG M300 Robotic Rehabilitation Treadmill
5.1.9 AlterG M300 Customers
5.2 Aretech
5.3 Berkley Robotics and Human Engineering Laboratory
5.4 Biodex
5.4.1 Biodex Clinical Advantage
5.5 Bioness
5.6 Bionik Laboratories / Interactive Motion Technologies (IMT)
5.6.1 Bionik Laboratories Acquires Interactive Motion Technologies, Inc. (IMT)
5.6.2 Biomarkers Of Motor Recovery
5.6.3 InMotion Robot Medical Conditions Treated
5.6.4 Interactive Motion Technologies (IMT) InMotion ARM™ Software
5.6.5 Bionik Laboratories Fiscal Year 2018 Revenue
5.7 Biodex Unweighting Systems

REPORT # SH28084999
564 PAGES
269 TABLES AND FIGURES
2019
$4,400 SINGLE COPY -- $8,800 WEB SITE POSTING
5.7.1 Biodex BioStep® 2 Semi-Recumbent Elliptical 295
5.7.2 Biodex BioStep 2 Helps Patients and Their Therapists Achieve Multiple Rehabilitation Objectives 296
5.7.3 Older Adults / Preambulation 296
5.7.4 Cardiac Rehabilitation 296
5.7.5 Biodex System 4 Pro 297
5.8 Bioxxtreme 298
5.9 Breg 299
5.10 Catholic University of America HandSOME Hand Spring Operated Movement Enhancer 300
5.11 Clafin Rehabilitation Distribution 300
5.12 DIH International Limited / Hocoma 307
5.12.1 Swiss Hocoma Merges with Hong Kong Based DIH International 308
5.12.2 DIH and Hocoma Synergistic Collaboration 308
5.12.3 Hocoma Partnership With The Slovenian Software Company XLAB 311
5.12.4 Hocoma Andago 312
5.12.5 Hocoma Lokomat Functional Electrical Stimulation 315
5.12.6 Hocoma Armeo® Spring for Stroke Victims 317
5.12.7 Hocoma Armeo® Spring Based On An Ergonomic Arm Exoskeleton 319
5.12.8 Hocoma Armeo® Spring Clinical Success 319
5.12.9 Hocoma Armeo Functional Therapy Of The Upper Extremities 320
5.12.10 Hocoma Armeo® Spring - Functional Arm and Hand Therapy 321
5.12.11 Hocoma Valedo Functional Movement Therapy For Low Back Pain Treatment 323
5.12.12 DIH / Hocoma Revenue 324
5.13 DJO Global 325
5.13.1 DJO Global Trademarks, Service Marks And Brand Names 328
5.13.2 DJO Global Business Activities 331
5.13.3 DJO / Chattanooga 331
5.13.4 Chattanooga Active-K CPM (Continuous Passive Motion) 335
5.13.5 DJO Revenue 347
5.13.6 Third Quarter Highlights 348
5.13.7 Business Transformation 348
5.13.8 Sales Results 348
5.13.9 DJO Global 349
5.14 Ekso Bionics 350
5.14.1 Ekso Rehabilitation Robotics 352
5.14.2 Ekso GT 352
5.14.3 Ekso Bionics HULC Technology Licensed to the Lockheed Martin Corporation 355
5.14.4 Ekso Bionics Customers 356
5.14.5 Ekso and Lockheed 363
5.14.6 Ekso Bionics 363
5.14.7 Ekso Bionics Wearable Bionic Suit 364
5.14.8 Ekso Gait Training Exoskeleton Uses 367
5.14.9 Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again 372
5.14.10 Ekso Bionics Revenue 372
5.15 FANUC - Industrial Robot Automation Systems and Robodrill Machine Centers 374
5.16 Focal Meditech 374
5.16.1 Focal Meditech BV Collaborating Partners: 376
5.17 HOBART GROUP / MOTORIKA 377
5.17.1 Motorika 378
5.17.2 Hobart Group / MedInvest Group / Motorika 379
5.17.3 Motorika ReoGo 379
5.17.4 Hobart Motorik ReoGo Portable Platform Shoulder, Elbow, And Forearm 380
5.17.5 Motorika ReoAmbulator Innovative Robotic Gait Training System 382
5.17.6 Motorika 383
5.18 HONDA GAIT TRAINING 385
5.18.1 Honda Motor ASIMO Humanoid Robot 389
5.18.2 Honda Motor 393
5.18.3 Honda Walk Assist 393
5.18.4 Honda Stride Management Motorized Assist Device 395
5.18.5 Honda Builds Unique Transportation Exoskeleton Device Market 396
5.19 Instead Technologies 396
5.19.1 Instead Technologies Services: 398
5.19.2 Instead Technologies 399
5.19.3 Instead Technologies RoboTherapist3D and 2D 400
5.19.4 Instead Technologies RoboTherapist3D 400
5.19.5 Instead Technologies Ultrasound Breast Volumes Breast Explorer 403
5.20 Intertaxon 407
5.21 iRobot 407
5.21.1 iRobot / InTouch Health 407
5.22 Kinova JACO 410
5.23 KLC Services 412
5.24 Madison Dearborn Partners 412
5.25 Mobility Research 412
5.25.1 Mobility Research HugN-Go 414
5.25.2 Mobility Research HugN-Go 350 414
5.25.3 Mobility Research LiteGait 415
5.26 MossRehab 418
5.27 Myomo 419
5.27.1 Myomo mPower 1000 420
5.27.2 Myomo MyoPro Motion G – Elbow-Wrist-Hand Orthosis 420
5.27.3 MyoPro Myoelectric Orthotics And Prosthetics 421
5.27.4 Myomo Neuro-Robotic Myoelectric Arm Orthosis System 422
5.27.5 Myomo EMG 423
5.27.6 Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living 423
5.27.7 Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living 425
5.27.8 Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living 427
5.27.9 Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living 429
5.27.10 Myomo Revenue 431
5.28 Orthocare Innovations 433
5.28.1 Orthocare Innovations Adaptive Systems™ For Advanced O&P Solutions. 434
5.28.2 Orthocare Innovations Prosthesis 435
5.28.3 Orthocare Innovations Edison™ Adaptive Vacuum Suspension System 436
5.28.4 Orthocare Innovations Edison Adaptive Prosthesis 437
5.28.5 Orthocare Innovations Intelligent Adaptive Prosthesis 437
5.28.6 Orthocare Innovations Edison Leg and Ankle 438
5.28.7 Orthocare Innovations Galileo Connector Technology 441
5.28.8 Orthocare Innovations Compas 442
5.29 Performance Health 443
5.29.1 Performance Health / Paterson Kinetec CPM 443
5.29.2 Paterson / Kinetec Spectra Knee CPM 445
5.30 ProMed Products Xpress 447
5.31 Reha-Stim 448
5.31.1 Reha-Stim Support Patients In Restoring Arm And Hand Function 448
5.31.2 Reha-Stim Medtec and YouRehab Merger 449
5.31.3 Reha-Stim Gait Trainer GT I 449
5.31.4 Reha-Stim Gait Trainer Target Market 453
5.31.5 Reha-Stim Support Patients In Restoring And Improving Gait Function 453
5.32 Rehabilitation Supply 454
5.33 Rehab-Robotics Company 455
5.34 ReWalk Robotics 456
5.34.1 ReWalk Robotics Revenue 458
5.35 Robotdalen 459
5.36 RSL Steeper 460
5.36.1 RSL Steeper Hand Prostheses 461
5.36.2 RSL Steeper Electronic Assistive Technology Devices for the Home 461
5.37 RU Robots 463
5.37.1 RU Robots 464
5.37.2 RU Robots Sunflower Robot 466
5.37.3 RU Robots Sophisticated Interactions 467
5.37.4 RU Robots Care-o-bot 468
5.38 Secom 469
5.38.1 Secom Co.Ltd MySpoon 469
5.38.2 Secom Co.Ltd MySpoon Manual Mode 470
5.39 Touch Bionics 473
5.39.1 Touch Bionics’ i-limb 475
5.39.2 Touch Bionics i-limb Muscle Triggers 476
5.39.3 Touch Bionics I-Limb Methods For Switching Modes 477
5.39.4 Touch Bionics Prostheses 480
5.39.5 Touch Bionics Active Prostheses 484
5.40 Tyromotion GmbH 486
5.40.1 Tyromotion GmbH Network 487
5.40.2 Tyromotion Diego - Robotic-assisted arm-rehabilitation 492
5.40.3 Tyromotion Therapy for Arms and Shoulders 493
5.41 Other Rehabilitation Robot Companies 494
5.41.1 Additional Rehabilitation Robots 510
5.41.2 Selected Rehabilitation Equipment Companies 513
5.41.3 Spinal Cord Treatment Centers in the US 525
6. REHABILITATION ROBOT VARIATIONS 540
6.1 Automated Process for Rehabilitation Robots 540
6.1.1 Why Rehabilitation is Essential 545
6.1.2 Rehabilitation Involves Relearning of Lost Functions 546
6.2 Continuous Passive Motion CPM Definition 550
6.3 Robotic Exoskeletons Empower Patient Rehabilitation Achievements 552
6.3.1 Rehabilitation Options 554
6.3.2 Rehabilitation Robots Economies Of Scale 554
6.4 Seizing the Robotics Opportunity 555
6.4.1 Modular Self-Reconfiguring Robotic Systems 556
6.5 Public Awareness of Rehabilitation Robotics 556
6.5.1 Rehabilitation Robotics Centers Of Excellence 557
6.6 Home Medical Rehabilitation Robots 557
6.6.1 US Veterans Administration Telemedicine and Domestic Robots 558
6.6.2 Rehabilitation Robots Provide Intensive Training For Patients And Physical Relief For Therapists 559
ABOUT THE COMPANY 560
Research Methodology 560
WinterGreen Research Process 562
Market Research Study 562
WinterGreen Research Global Market Intelligence Company 563

List of Figures

2
Figure 1. Rehabilitation Robotics Products Market Driving Factors 36
Figure 2. Rehabilitation Robot Market Driving Forces 40
Figure 3. Rehabilitation Robot Medical Conditions Treated 41
Figure 4. Stroke Rehabilitation Guidelines For Interactive Robotic Therapy 42
Figure 5. Extremity Rehabilitation Robot Technology 43
Figure 6. Health Care Conditions Treated With Rehabilitation Wearable Robotics 44
Figure 7. Robotic Technologies Leverage Neuropasticity 45

REPORT # SH28084999 564 PAGES 269 TABLES AND FIGURES 2019
$4,400 SINGLE COPY -- $8,800 WEB SITE POSTING
Figure 8. Neuro-Rehabilitation Patient Conditions Addressed
Figure 9. Neuro-Rehabilitation Services
Figure 10. Stroke Response Process Leverage Protocols Interdisciplinary Team Composition
Figure 11. Stroke Treatment State-Of-The-Art, Full-Service Stroke Treatment Facilities
Figure 12. Rehabilitation Robotics Products Market Driving Factors:
Figure 13. Rehabilitation Robot Tasks
Figure 14. Rehabilitation Robot Market Driving Forces
Figure 15. Rehabilitation Robot Medical Conditions Treated
Figure 16. Stroke Rehabilitation Guidelines For Interactive Robotic Therapy
Figure 17. Extremity Rehabilitation Robot Technology
Figure 18. Health Care Conditions Treated With Rehabilitation Wearable Robotics
Figure 19. Robotic Technologies Leverage Principles Of Neuroplasticity
Figure 20. Rehabilitation Robot Market Shares, Dollars, Worldwide, 2018
Figure 21. Rehabilitation Robot Market Shares, Dollars, Worldwide, 2018
Figure 22. Rehabilitation Therapy Robots Market Participant Descriptions Worldwide, 2018
Figure 23. DJO Smart Knee Brace
Figure 24. Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine:
Figure 25. Homoca Continuum of Rehabilitation
Figure 26. Karman Xo-202 Standing Wheelchair Power Stand Power Drive
Figure 27. Rehabilitation Therapy Robots Market Shares, Dollars and Units, Worldwide, 2018
Figure 28. Rehabilitation Robots Market Forecasts, Dollars, Shipments, Worldwide, 2018-2025
Figure 29. Rehabilitation Robot Market Forecasts, Dollars, Worldwide, 2018-2025
Figure 30. Rehabilitation Robot Market Segments, Dollars, Worldwide, 2018-2025
Figure 31. Rehabilitation Robot Market Segments, Percent of Units, Worldwide, 2018-2025
Figure 32. Rehabilitation Robot Regional Market Segments, Dollars, 2018
Figure 33. Rehabilitation Robot Regional Market Segments, 2018
Figure 34. Exoskeleton Market Shares, Dollars, Worldwide, 2018
Figure 35. Exoskeleton Market Shares, Percent, Worldwide, 2018
Figure 36. Selected Upper Limb Stroke Rehabilitation Devices
Figure 37. U.S. Rehab Patient Demographics
Figure 38. Market Metrics for Rehab Patients
Figure 39. Spinal Cord Injuries Causes, Number, Worldwide, 2018
Figure 40. US Stroke Incidence Numbers
Figure 41. Chattanooga OptiFlex® 3 Knee Continuous Passive Motion (CPM) Device
Figure 42. Rehabilitation Robot Categories
Figure 43. Shoulder Biomechanics Functions
Figure 44. Physical Therapy Enhances Recovery After Hip Injury
Figure 55. InTouch Health
Figure 56. InteraXon Muse Headband
Figure 57. Interaxon Finely Calibrated Brain Wave Sensors
Figure 58. InteraXon Measuring Brainwaves
Figure 59. Lower Limb Prosthetic Designed By The Center For Intelligent Mechatronics
Figure 60. RSL Steeper Pererro+
Figure 61. RSL Steeper Pererro+ Key Features:
Figure 62. RSL Steeper Bebionic’s Standard Glove
Figure 63. RSL Steeper Prosthesis Hand
Figure 64. Rewalk-Robotics-Personal Support
Figure 65. Permobil F5 Corpus VS Stand Sequence
Figure 66. Karman Xo-202 Standing Wheelchair Power Stand Power Drive
Figure 67. Karman Xo-202 Standing Wheelchair Power Stand Power Drive Features
Figure 68. Berkeley Robotics Austin
Figure 69. Motorized Physiotherapy Controlled Mobilization Goals of Phase 1 Rehabilitation
Figure 70. Continuous Passive Motion (CPM) Device Benefits Following Knee Arthroplasty
Figure 71. Global Medical CPM device
Figure 72. Global Medical CPM device Features
Figure 73. Global Medical Handheld Controller
Figure 74. Furniss Corporation Model 1800™ Knee CPM
Figure 75. Furniss Corporation CPM 1800 Features
Figure 76. Furniss Corporation CP
Figure 77. Furniss Corporation Phoenix Model 1850 Knee CPM
Figure 78. Furniss Corporation Continuous Passive Motion DC2480 Knee CPM
Figure 79. Danniflex 480 Lower Limb CPM Unit
Figure 80. Danniflex Lower Limb CPM Features
Figure 81. Rehab-Robotics Company Hand of Hope Therapeutic Device
Figure 82. Rehab-Robotics Repetitive Training System
Figure 83. Rehab-Robotics Hand of Hope Movement Control
Figure 84. Rehab-Robotics Modes Provide Different Levels Of Assistance In Movement Of Patient’s Hand
Figure 85. Rehab-Robotics Different Modes
Figure 86. Rehab-Robotics Arm Training
Figure 87. Rehab-Robotics Hand of Hope Modes
Figure 88. Bioxxtreme Robotic Rehabilitation System
Figure 89. Corbys Rehabilitation Robot
Figure 90. Corbys System Functions
Figure 91. Corbys Rehabilitation System
Figure 92. Corbys Rehabilitation Orthosis Actuation Test Stand
Figure 93. Corbys Mobile Robotic Gait Rehabilitation System
Figure 94. Swtotek Leg Orthosis of Motion Maker
Figure 95. Rehabilitation Robot System Concerns Addressed During System Design
Figure 96. Rehabilitation Systems Initiate Active Movements
Figure 97. Methods of Active Initiation of Movements In Robotic Rehabilitation
Figure 98. Users Find Robots Preferable and More Versatile than Inadequate Human Trainers
Figure 99. Rehabilitation Robots Software Functions
Figure 100. InMotion Robots Immediate Interactive Response Sets
Figure 101. HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Benefits
Figure 102. HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Monitoring
Figure 103. HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
Figure 104. HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
Figure 105. Hand Spring Operated Movement Enhancer
Figure 106. Hand Spring Robot Operated Movement Enhancer
Figure 107. AlterG Anti-Gravity Treadmills Features, Built On Differential Air Pressure Technology
Figure 108. AlterG Anti-Gravity Treadmills Target Markets 253
Figure 109. AlterG Product Positioning 254
Figure 110. AlterG Anti-Gravity Treadmill Customer Base 255
Figure 111. AlterG M320 Anti-Gravity Treadmill 256
Figure 112. AlterG® Anti-Gravity Treadmill Functions 257
Figure 113. AlterG Therapy Functions 258
Figure 114. AlterG: PK100 PowerKnee 259
Figure 115. AlterG Bionic Neurologic And Orthopedic Therapy Leg 261
Figure 116. AlterG M300 Robotic Rehabilitation Treadmill 264
Figure 117. AlterG M300 Robotic Leg, Knee and Thigh Rehabilitation Treadmill 265
Figure 118. AlterG Anti-Gravity Treadmill Precise Unweighting Technology Patient Rehabilitation Functions 266
Figure 119. AlterG Anti-Gravity Treadmill Heals Patient 268
Figure 120. Selected US Regional AlterG M300 Customer Clusters 270
Figure 121. Afetech ZeroG Gait & Balance 275
Figure 122. Aretech Rehabilitation Robot 276
Figure 123. Berkley Robotics and Human Engineering Laboratory Research Work 278
Figure 124. Berkley Robotics and Human Engineering Laboratory Research Work 279
Figure 125. Selected Bionik International Clinical Partners 283
Figure 126. Interactive Motion Technologies (IMT) InMotion Biomarkers Aid Stroke Recovery 289
Figure 127. Interactive Motion Technologies (IMT) InMotion Robot Medical Conditions Treated 290
Figure 128. Interactive Motion Technologies (IMT) InMotion ARM™ Software Functions 291
Figure 129. Interactive Motion Technologies (IMT) 2D Gravity Compensated Therapy Is More Effective Than 3D Spatial Therapy 292
Figure 130. Biodex Dynamometer Target Markets 294
Figure 131. Biodex BioStep® 2 Semi-Recumbent Elliptical 295
Figure 132. Biodex System 4 Pro 297
Figure 133. Bioxtreme Robotics Rehabilitation For Cerebral Stroke Or Traumatic Brain Injuries (TBI) On Error Enhancement Technology 298
Figure 134. Breg Home Therapy CPM Continuous Passive Motion Practice Kits 299
Figure 135. Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine: 309
Figure 136. Hocoma Therapy Solutions Treatments 310
Figure 137. Hocoma Lokomat Pro 313
Figure 138. Hocoma Patient Rehabilitation Conditions Addressed 314
Figure 139. Hocoma Robotic Improvements to Rehabilitation 315
Figure 140. Hocoma Lokomats Robot 316
Figure 141. Hocoma ArmeoSpring for Stroke Victims 317
Figure 142. Hocoma ArmeoSpring for Children 318
Figure 143. Hocoma Armeo Power Robotic Arm Exoskeleton 321
Figure 144. Clinical Example of Patients Using the Hocoma Armeo®Spring 322
Figure 145. Hocoma Valedo Functional Lower Back Movement Therapy 323
Figure 146. Hocoma Valedo®Motion Low Back Pain Therapy Advantages 324
Figure 147. DJO Smart Knee Brace 326
Figure 148. DJO Rehabilitation Product Target Markets 327
Figure 149. DJO Rehabilitation Product Targets Care Givers 327
Figure 150. Chattanooga OptiFlex® Knee Continuous Passive Motion (CPM) 333
Figure 151. Chattanooga CPM Unique Features: 333
Figure 152. Chattanooga CPM New/Improved Features: 334
Figure 153. Chattanooga CPM Standard Features: 334
Figure 154. Chattanooga CPM Specifications: 335
Figure 155. Chattanooga CPM 335
Figure 156. Chattanooga Active-K Functions 336
Figure 157. DJO Chattanooga Active-K 337
Figure 158. Chattanooga Active-K Motorized Physiotherapy Unit Integration Benefits 338
Figure 159. Chattanooga Active-K Motorized Physiotherapy Controlled Mobilization 339
Figure 160. Chattanooga Active-K Motorized Physiotherapy CPM (Continuous Passive Motion) 340
Figure 161. Chattanooga Active-K Motorized Physiotherapy Controller 341
Figure 162. DJO Chattanooga Active-K Features: 342
Figure 163. DJO Chattanooga Active-K Features: 343
Figure 164. Chattanooga Active-K Motorized Physiotherapy Therapeutic Benefits 344
Figure 165. Chattanooga OptiFlex® 3 Elbow Continuous Passive Motion (CPM) 345
Figure 166. Chattanooga OptiFlex® 3 Elbow Continuous Passive Motion (CPM) Specifications: 346
Figure 167. Chattanooga OptiFlex® 3 Elbow Continuous Passive Motion (CPM) Flexion 346
Figure 168. Ekso Bionics Regional Presence 356
Figure 169. Ekso Technology 365
Figure 170. Ekso Bionics Gait Training 366
Figure 171. Ekso Bionics Gait Training Functions 367
Figure 172. Ekso Gait Training Exoskeleton Functions 368
Figure 173. Ekso Gait Training Exoskeleton Functions 368
Figure 174. Ekso Bionics Step Support System 369
Figure 175. Ekso Bionics Operation Modes 370
Figure 176. Ekso Bionics Beep Bop: Rethink Robotics' Baxter Model 371
Figure 177. Ekso Bionics Bionic Suit 371
Figure 178. Ekso Bionics Financial Results 373
Figure 179. FOCAL Meditech BV Products: 375
Figure 180. Focal Meditech BV Collaborating Partners: 376
Figure 181. Motorika ReoGo 379
Figure 182. Motorik ReoGo™ Therapist Benefits: 381
Figure 183. Motorik ReoGo™ Patient Benefits: 382
Figure 184. Motorika ReoAmbulator 383
Figure 185. Motorika ReoAmbulator and Gait Training Devices 385
Figure 186. Honda Walk assist 386
Figure 187. Honda Stride Management 387
Figure 188. Honda Walk Assist Device Specifications 389
Figure 189. Honda ASIMO 390
Figure 190. Honda ASIMO Front Position 391
Figure 191. Honda ASIMO Dimensions and Weight 392
Figure 192. Honda ASIMO Intelligence Features 392
Figure 193. Honda Walk Assist 394
Figure 194. Honda Motors Prototype Stride Management Motorized Assist Device 395
Figure 195. Instead Technologies Research: 397
Figure 196. Instead Technologies Consultancy Services: 398
Figure 197. Instead Technologies Advantages of RoboTherapist3D Therapy: 401
Figure 198. Instead Technologies Robotherapist 3D RT3D Arm 401
Figure 199. Instead Technologies Robotherapist 3D RT3D Cup 402
Figure 200. Instead Technologies RT3D Hand 402
Figure 201. Instead Technologies Robotherapist 3D RT3D Ring Structure 403
Figure 202. Instead Technologies Ultrasound Breast Volumes. BreastExplorer 404
Figure 203. Instead Technologies Ultrasound Breast Volumes Breast Explorer Handheld Device 405
Figure 204. Instead Technologies Ultrasound Breast Volumes Breast Explorer Screen Display 406
Figure 205. iRobot / InTouch Health RP-VITA 408
Figure 206. iRobot / InTouch Health RP-VITA 409
Figure 207. Kinova Robot Specifications 410
Figure 208. Kinova Robot Features 411
Figure 209. Mobility Research LiteGait Device 413
Figure 210. Mobility Research HugN-Go 350 414
Figure 211. Mobility Research HugN-Go 350 Supported Ambulation Device 415
Figure 212. Mobility Research LiteGait Solution for Gait Therapy
Figure 213. Mobility Research LiteGait Advanced Solutions For Gait Therapy
Figure 214. Myomo MyoPro Motion G – Elbow-Wrist-Hand Orthosis
Figure 215. MyoPro Motion-G Elbow-Wrist-Hand Orthosis Benefits
Figure 216. Myopro Motion-G Clinical Criteria
Figure 217. Myomo Mpower 1000 Indications
Figure 218. Myomo mPower 1000 Contraindications
Figure 219. Myomo Mpower 1000 Indications
Figure 220. Myomo Mpower 1000 Contraindications
Figure 221. Myomo Mpower 1000 Indications
Figure 222. Myomo Mpower 1000 Contraindications
Figure 223. Myomo Mpower 1000 Indications
Figure 224. Myomo mPower 1000 Contraindications
Figure 225. Myomo Revenue
Figure 226. Orthocare Innovations Prosthesis
Figure 227. Orthocare Innovations Edison Prosthesis Ankle and Foot
Figure 228. Orthocare Innovations Edison Leg and Ankle
Figure 229. Orthocare Innovations Prosthetic Foot That Adjusts Automatically
Figure 230. Orthocare Innovations
Figure 231. Paterson Kinetec Knee CPM
Figure 232. Paterson Kinetec Spectra Knee CPM Features:
Figure 233. Paterson Kinetec Spectra Knee CPM Treatment Modes
Figure 234. Reha-Stim Gait Trainer GT I
Figure 235. Reha-Stim Gait Trainer Improves The Patient Ability To Walk Through Continuous Practice
Figure 236. ReWalker
Figure 237. Rewalk Robotics Revenue
Figure 238. RUR Key Market Areas For Robotic Technologies
Figure 239. RU Robots Core Technologies And Competencies
Figure 240. RU Robots Advanced Robotics
Figure 241. RU Robots Sophisticated Interactions
Figure 242. RU Robots Care-o-bot Large Service Robot
Figure 243. Secom Co.Ltd MySpoon Manual and Semi-Automatic Mode
Figure 244. Secom Co.Ltd MySpoon Automatic Mode
Figure 245. Secom Co.Ltd MySpoon Features in Semi-Automatic Mode
Figure 246. Secom Co.Ltd MySpoon Automatic Mode
Figure 247. Touch Bionics Prosthetic Technologies
Figure 248. Touch Bionics’ i-limb Functions
Figure 249. Touch Bionics i-limb Muscle Triggers
Figure 250. Touch Bionics Quick Grips
Figure 251. Touch Bionics Prostheses
Figure 252. Touch Bionics Active Prostheses
Figure 253. Touch Bionics Active prostheses
Figure 254. Touch Bionics Products
Figure 255. Tyromotion GmbH Employee Group
Figure 256. Tyromotion GmbH Pablo®Plus System Strengthens The Upper Extremity Hand, Arm And Wrist Functions
Figure 257. Tyromotion Network
Figure 258. Tyromotion Bilateral 3D Arm Robot And Virtual Reality Glasses
Figure 259. Tyromotion Virtual Reality Therapy Delivers 3D Training
Figure 260. Tyromotion Virtual Reality Therapy 3D Training
Figure 261. Tyromotion Diego
Figure 262. Advantages of Rehabilitation Robot Therapy with Tyromotion DIEGO
Figure 263. Robotic Rehabilitation Devices Automated Process Benefits
Figure 264. Robotic Rehabilitation Devices Emerging Technologies 544
Figure 265. Robotic Rehabilitation Wearable Devices Benefits 545
Figure 266. Rehabilitation Involves Relearning Lost Function 547
Figure 267. Rehabilitation Lost Function Relearning Initiatives 548
Figure 268. CPM Functions: 551
Figure 269. CPM Use Indications: 551
ABOUT THE COMPANY

WinterGreen Research, research strategy relates to identifying market trends through reading and interviewing opinion leaders. By using analysis of published materials, interview material, private research, detailed research, social network materials, blogs, and electronic analytics, the market size, shares, and trends are identified. Analysis of the published materials and interviews permits WinterGreen Research senior analysts to learn a lot more about markets. Discovering, tracking, and thinking about market trends is a high priority at WinterGreen Research. As with all research, the value proposition for competitive analysis comes from intellectual input.

WinterGreen Research, founded in 1985, provides strategic market assessments in telecommunications, communications equipment, health care, Software, Internet, Energy Generation, Energy Storage, Renewable energy, and advanced computer technology. Industry reports focus on opportunities that expand existing markets or develop major new markets. The reports access new product and service positioning strategies, new and evolving technologies, and technological impact on products, services, and markets. Innovation that drives markets is explored. Market shares are provided. Leading market participants are profiled, and their marketing strategies, acquisitions, and strategic alliances are discussed. The principals of WinterGreen Research have been involved in analysis and forecasting of international business opportunities in telecommunications and advanced computer technology markets for over 30 years.

The studies provide primary analytical insight about the market participants. By publishing material relevant to the positioning of each company, readers can look at the basis for analysis. By providing descriptions of each major participant in the market, the reader is not dependent on analyst assumptions, the information backing the assumptions is provided, permitting readers to examine the basis for the conclusions.

WinterGreen Research is positioned to help customers facing challenges that define the modern enterprises. The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.

WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.
ABOUT THE PRINCIPAL AUTHOR

Susan Eustis, President, co-founder of WinterGreen Research is a senior analyst. She has done research in communications and computer markets and applications. She holds several patents in microcomputing and parallel processing. She has the original patents in electronic voting machines. She has new patent applications in format varying, multiprocessing, and electronic voting. She is the author of recent studies of the Solar Renewable Energy, Wind Energy, Thin Film Batteries, Business Process Management marketing strategies, Internet equipment, biometrics, a study of Internet Equipment, Worldwide Telecommunications Equipment, Top Ten Telecommunications, Digital Loop Carrier, Web Hosting, Web Services, and Application Integration markets.

Ms. Eustis is a graduate of Barnard College. Ms. Eustis was names Top Woman CEO in 2012 by Who’s Who Worldwide. She was named Top Woman Market Research Analyst the same year and successive years 2013, 2014, 2015, 2016, 2017, and 2018 thereafter. She has been featured twice on the cover of Women of Distinction. She was cited in a recent Time Magazine article and major media articles on Youth Sports market growth. She was also featured in recent Wall Street Journal, New York Times, HBO, and London Times articles.

About the WinterGreen Research Team: The WinterGreen Research Team is comprised of senior analysts that prepare the market research and analysis that is offered to the client and developed using an iterative process to achieve a final study. Typical projects include providing market/viability research. The team can look at how drones can be applied to critical infrastructures safety, including: type of market existing, Barriers, Forecast demand and competitors, SWOT and competitive advantages, Price Analysis, product design recommendations (marketing orientation).

Research is typically for many different regions or localities, for example EU countries including Spain, UK, Nordic, Germany, and France. Typical projects profile the United States and areas of Asia. It is common to three representative countries from South America, Brazil, Argentina, Chile, and Mexico. Representative countries from Asia APAC typically include Japan, China, India, and Australia.

Critical infrastructure safety, including: type of market existing, barriers to entry and to faithful execution of product provision, forecast of demand, market share, SWOT, competitive advantage of major competitors, identification of new technologies and new companies, price performance analysis, product design recommendations, and marketing considerations are typical topics covered.