
Mountains of Opportunity

Picture by Susan Eustis

WinterGreen Research, Inc.
Lexington, Massachusetts www.wintergreenresearch.com 781 853 5078

STUDY #28215999 715 PAGES 291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING 2019
CHECK OUT THESE KEY TOPICS

Microservices, Mission Critical Messaging, and Open Source Streaming Used to Create Machine to Machine Asynchronous and Synchronous Communication

Robotic Software
Microservices
Middleware Messaging
Open Source Streaming
Web Services
E-Commerce
Cloud Technology
Middleware Messaging
Drives Web Services and SOA
Middleware Messaging
Cross Application
Cross Platform Data
Exchange
Once and Only Once

Asynchronous Message
Delivery
Message Delivery Server
Application Server
Web 2.0
Wiki-Style Collaboration
Social Networking
Business Process
Management
Virtualized Systems
Open Source Application
Server
WinterGreen Research
Web Assets
JBOSS

Reusable Software
Components
Virtualization
Server Hosting Centers
Web Properties
Web Application Gallery
Web PI
Collaboration
Mashups
Web services
Web Analytics / Frameworks
Java
Linux

Open Source Streaming Mobile Smart Phone Network Connectivity, Tablet Use For Mobile Computing, Internet Apps, Cloud Computing, Soa, And Business Process Management Systems

STUDY #28215999
715 PAGES
291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING
2019
LEXINGTON, Massachusetts (June 15, 2019) – WinterGreen Research announces that it has published a new module Mission Critical Messaging and Open Source Streaming: Market Shares, Strategies, and Forecasts, 2019 to 2025. The 2019 study has 715 pages and 291 tables and figures. Growth is based on implementation of streaming mobile smart phone network connectivity, tablet use for mobile computing, Internet apps, cloud computing, and business process management systems (BPM) that support collaboration. IoT process API components support enterprise innovation and change. Software forms the basis of change. Software API streaming message development tools drive innovation. Mission critical messaging is a key aspect of those aspects of web process making IT flexible and adaptable.

Open source carves a place in mission critical messaging with flavors of MQ providing foundation for cloud and mobile. The move to accelerate replacements for once and only once automated delivery process for the line of business is being achieved, built into new types of cloud data centers. Streaming messaging is being used to implement stock ticker info, log management, web site management, and data management inside cloud systems that stretch the boundaries of the enterprise.

Messaging is used to reach to all parts of the data center and to user endpoints. Marketing departments use messaging to target smartphones and tablets. Messaging is fundamental to the ability to launch APIs anywhere. Systems of engagement are dependent on implementing management decentralization and supporting user empowerment leveraging messaging. Mission critical messaging forms the base for analytics systems.

Scale is everything in the era of Clos architecture of the data center and optical transceivers for inside the data center. Data moves at the speed of light around the network inside the data center so scale is important. The charter of mission critical messaging relates to automatically interconnected APIs. Robotic software is used to install the automated APIs to achieve process managed by orchestration.

A financial transaction is not something to lose or duplicate. If it gets counted twice, or gets missed, this is not a good system. Smart phones, Internet of Things (IoT), and tablets change the markets for messaging and cloud IT systems implementation. Cloud is increasing the need for mission critical decoupled messaging so that apps can interconnect automatically, bringing data to the desired compute node.
According to Susan Eustis, principal author of the study, “The communication of data accurately is a demanding task. There is trouble if a sent message does not get through or contra-wise if a message that is sent goes through twice. When there is a person on one or both sides of the message sending, human intelligence is able to deal with the problem if the message does not get sent, or if it gets sent twice, but for a machine to machine communication, the anticipation of difficulty has to be built into the system.”

The market for Middleware Messaging and Open Source Streaming sector at $17.9 billion in 2018 is expected to be worth $67 billion by 2025. Growth is based on implementation of streaming mobile smart phone network connectivity, tablet use for mobile computing, Internet apps, cloud computing, IoT, and business process management systems (BPM) that support collaboration. 5G processes API components to support technology innovation and change. Software API messaging forms the basis of change. Software API streaming message development tools drive innovation. Mission critical messaging is a key aspect of those aspects of web process making IT flexible and adaptable.

WinterGreen Research is an independent research organization funded by the sale of market research studies all over the world and by the implementation of ROI models that are used to calculate the total cost of ownership of equipment, services, and software. The company has 35 distributors worldwide, including Global Information Info Shop, Market Research.com, Research and Markets, and electronics.ca. It conducts its business with integrity.

The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.

WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.

Companies Profiled

Market Leaders

- IBM
- Microsoft
- Tibco
- Oracle
- Microfocus / HPE Software
- RedHat
- Fujitsu
- Fiorano
- Confluent
- Mulesoft
- Software AG / WebMethods

Selected Market Participants

360 Logica	Elastic Stack Open Source	Microfocus
ActiveMQ	Fabasoft Group	Microsoft SOA
Adobe	Fiorano	Mulesoft
AgilePoint	Fujitsu	Nastel Technologies
Apache Flume	Hewlett Packard Enterprise	Newgen
Appian	HostBridge	OpenText
Aurea	IBM	Oracle
BigAgi	Informatica	PegaSystems
BizFlow	Information Builders / iWay	Perficient
BonitaSoft	Software	Pivotal
CA Technologies	Intalio	PNM Soft
Cisco Systems	Kofax	Progress Software
Confluent	Managed Methods	Red Hat
Crosscheck Networks	Mega	SAP
Dell / VMWare	Mendix	SOALIB

STUDY #28215999
715 PAGES
291 TABLES AND FIGURES

$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING
2019
Report Methodology

This is the 821st report in a series of primary market research reports that provide forecasts in communications, telecommunications, the Internet, computer, software, telephone equipment, health equipment, and energy. Automated process and significant growth potential are a priority in topic selection. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. They are supported by a team, each person with specific research tasks and proprietary automated process database analytics. Forecasts are based on primary research and proprietary data bases.

The primary research is conducted by talking to customers, distributors and companies. The survey data is not enough to make accurate assessment of market size, so WinterGreen Research looks at the value of shipments and the average price to achieve market assessments. Our track record in achieving accuracy is unsurpassed in the industry. We are known for being able to develop accurate market shares and projections. This is our specialty.

The analyst process is concentrated on getting good market numbers. This process involves looking at the markets from several different perspectives, including vendor shipments. The interview process is an essential aspect as well. We do have a lot of granular analysis of the different shipments by vendor in the study and addenda prepared after the study was published if that is appropriate.

Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participant in the segment. Installed base analysis and unit analysis is based on interviews and an information search. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, opinion leaders, and companies seeking to develop measurable market share.
Over 200 in depth interviews are conducted for each report with a broad range of key participants and industry leaders in the market segment. We establish accurate market forecasts based on economic and market conditions as a base. Use input/output ratios, flow charts, and other economic methods to quantify data. Use in-house analysts who meet stringent quality standards.

Interviewing key industry participants, experts and end-users is a central part of the study. Our research includes access to large proprietary databases. Literature search includes analysis of trade publications, government reports, and corporate literature.

Findings and conclusions of this report are based on information gathered from industry sources, including manufacturers, distributors, partners, opinion leaders, and users. Interview data was combined with information gathered through an extensive review of internet and printed sources such as trade publications, trade associations, company literature, and online databases. The projections contained in this report are checked from top down and bottom up analysis to be sure there is congruence from that perspective.

The base year for analysis and projection is 2018. With 2018 data and data from several years prior to that as a baseline, market projections are developed for 2019 through 2025.

These projections are based on a combination of a consensus among the opinion leader contacts interviewed combined with understanding of the key market drivers and their impact from a historical and analytical perspective.

The analytical methodologies used to generate the market estimates are based on penetration analyses, similar market analyses, and delta calculations to supplement independent and dependent variable analysis. All analyses are displaying selected descriptions of products and services.

This research includes reference to an ROI model that is part of a series that provides IT systems financial planners access to information that supports analysis of all the numbers that impact management of a product launch or large and complex data center. The methodology used in the models relates to having a sophisticated analytical technique for understanding the impact of workload on processor consumption and cost.

WinterGreen Research has looked at the metrics and independent research to develop assumptions that reflect the actual anticipated usage and cost of systems. Comparative analyses reflect the input of these values into models.
The variables and assumptions provided in the market research study and the ROI models are based on extensive experience in providing research to large enterprise organizations and data centers. The ROI models are useful for comparing products from different manufacturers, for example servers from different manufacturers, Systems z models from IBM, and labor costs by category around the world.

This information has been developed from WinterGreen research proprietary data bases constructed as a result of preparing market research studies that address the software, energy, healthcare, telecommunicatons, and hardware businesses.

EXECUTIVE SUMMARY

The study is designed to give a comprehensive overview of the Mission Critical Messaging and Open Source Streaming: market segment analysis. Research represents a selection from the mountains of data available of the most relevant and cogent market materials, with selections made by the most senior analysts. Commentary on every aspect of the market from independent analysts creates an independent perspective in the evaluation of the market. In this manner the study presents a comprehensive overview of what is going on in this market, assisting managers with designing market strategies likely to succeed.

Table of Contents

MISSION CRITICAL MESSAGING AND MICROSERVICES EXECUTIVE SUMMARY	37
Mission Critical Messaging Market Shares	37
Superior Application Middleware Delivers Enterprise Agility	41
With IoT, APIs Are Used for Everything	43
Web Transactions Implemented by IBM Blockchain	44
IBM Blockchain Interactions	50
IBM Use Cases for IoT and Blockchain	52
Mission Critical Messaging Market Forecasts	53
1. MICROSERVICES MESSAGING AND SYSTEMS INTEGRATION MARKET DEFINITION	57
1.1 Microservices	57
1.1.1 Cloud Computing	58

Pricing

| STUDY #28215999 | 715 PAGES | 291 TABLES AND FIGURES |
| $4,400 SINGLE TEAM OF USERS | -- | $8,800 WEB SITE POSTING | 2019 |
1.1.2 Google Clos Networks 60
1.1.3 Microsoft Cloud Business Model: Private Cloud – Unlimited Virtualization Rights 62
1.2 Typical Mission Critical Messaging Functions 64
1.2.1 Mission Critical Apache Kafka API Streaming 66
1.3 Apache Kafka Distributed Streaming Platform 70
1.3.1 Stream Processing 76
1.3.2 Apache Event Sourcing 77
1.4 Private Cloud Computing Model 79
1.4.1 IBM Open Systems Hybrid Cloud 79
1.4.2 IBM Microservices Foundation 80
1.5 Mission Critical Messaging Products 81
1.5.1 Mission Critical Middleware Messaging 81
1.6 Mission Critical Messaging As A Base For Secure Application Integration 82
1.6.1 IBM MQ 83
1.7 Mission Critical Messaging Market Dynamics 85
1.7.1 Cloud Model For Consuming And Delivering Business And IT Services 89
2. MISSION CRITICAL MESSAGING AND STREAMING MARKET SHARES AND MARKET FORECASTS90
2.1 Mission Critical is Decoupled Messaging 90
2.1.1 Superior Application Middleware Delivers Enterprise Agility 95
2.1.2 IoT Uses APIs for Everything Smart 98
2.1.3 Web Transactions Implemented by IBM Blockchain 99
2.2 Mission Critical Messaging Market Shares 100
2.2.1 Hyperscale Data Center Containers Hold Real Promise For Application Integration 102
2.2.2 IBM MQ 107
2.2.3 Azure from Microsoft 107
2.2.4 Tibco Transport Layer 107
2.2.5 Fiorano Enterprise Messaging Backbone 108
2.2.6 Apache Kafka Usage at Linked IN 108
2.2.7 Confluent 108
2.3 Mission Critical Messaging Market Forecasts 109
2.3.1 Worldwide Mission Critical Messaging Unit Shipments Analysis 115
2.3.2 Mission Critical Messaging Market Segments Dollars and Units 117
2.3.3 Cloud 2.0 Mega Data Center Evolution 120
2.3.4 Middleware Messaging and Microservices Segment Analysis 121
2.3.5 Worldwide Mission Critical Messaging Unit Shipments 124
2.3.6 Typical Providers of Industrial IoT Asset Efficiency Solutions 126
2.3.7 Hitachi Analytics Diagnoses Manufacturing Leveraging Messaging Middleware 126
2.3.8 Microservices Integration Of E-Business 127
2.3.9 Market Driving Forces For Real Time Exchange of Information 128
2.3.10 Mission Critical Messaging Growth Factors 133
2.3.11 Backbone Connectivity Across All Platforms with Open Systems 136
2.3.12 Financial Services and Messaging Applications 137
2.3.13 Azure Microsoft Web Services 141
2.3.14 Publish Subscribe Messaging 142
2.3.15 JMS Messaging 143
2.3.16 SCADA Messaging 143
2.3.17 Open Systems Backbone Connectivity Across Platforms / Messaging Integrated Across Microsoft 145
2.3.18 Open Source Distributed Messaging System Description 145
2.4 Blockchain and Cryptocurrency Market Driving Forces 146
2.5 Mission Critical Messaging Regional Analysis 151
3. MICROSERVICES MESSAGING AS SYSTEMS INTEGRATION 154
3.1 Microservices Definition 154
3.1.1 To Successfully Adopt Microservices 155
3.1.2 Microservices Messaging: 157
3.1.3 Approach to Handle Transactions That Involves More Than One Microservice 157
3.2 Asynchronous Protocol 158
3.3 Impact of IBM / Red Hat Merger
3.3.1 Big Four Cloud Providers:
3.3.2 Type Of Customer Buying These Products
3.4 Confluent Kafka
3.4.1 Kafka Streams API Continuous Queries Used To Automate Real-Time Intelligence At Scale
3.4.2 Kafka Streams API Flow Of Data In Real-Time Streams

4. MISSION CRITICAL MIDDLEWARE AND STREAMING MESSAGING TECHNOLOGY

4.1 Apache Kafka
4.1.1 Kafka Event-Driven Applications
4.1.2 Enterprise Publish Subscribe Messaging Enhancements
4.1.3 Kafka Streaming Data Integration Tools
4.1.4 Kafka Streaming Enterprise Service Bus
4.1.5 Kafka Streaming Enterprise Service Bus Change Capture Systems
4.1.6 Data Warehouses and Apache Hadoop
4.1.7 Kafka Stream Processing Systems

4.2 Biggest Data Centers

4.3 Mission Critical Messaging Communication Protocols
4.3.1 TradeLens to Drive Transparency in Global Shipping
4.3.2 Communication Protocols
4.3.3 Mission Critical Messaging Middleware Transport Layer
4.3.4 IBM WebSphere MQ Publish / Subscribe Messaging
4.3.5 IBM WebSphere MQ Messaging Provider
4.3.6 WebSphere MQ Asynchronous Message Consumption
4.3.7 IBM WebSphere MQ Message Selection
4.3.8 IBM WebSphere MQ Sharing A Communications Connection
4.3.9 IBM WebSphere MQ Read Ahead On Client Connections
4.3.10 Sending IBM MQ Messages
4.3.11 IBM MQ Channel Exits
4.3.12 IBM MQ Message Properties

4.4 Mission Critical Messaging As A Base For Services Oriented Architecture (SOA)

4.5 Mission Critical Messaging As A Base For Application Integration
4.5.1 IBM MQ

4.6 Open Software Specification Messaging
4.6.1 Open Software Message Queuing Protocol Business Case
4.6.2 Asynchronous Connections
4.6.3 Rich Processing Frameworks

4.7 JSON Web Tokens

4.8 OASIS Secure, Reliable Transaction Web Services Messaging Architecture
4.8.1 Reliable Message-Based Web Services Communication

4.9 Streams For Messaging and Data Access

4.10 Message Queuing
4.10.1 Database Message Queuing
4.10.2 Data and Message Transformation

4.11 Componentization

4.12 Speed, Flexibility, and Scalability

4.13 Mission Critical Message Throughput
4.13.1 Message Persistence
4.13.2 Message Size
4.13.3 Data Format
4.13.4 Message Flow Complexity
4.14 Message Input To Output Ratio
4.15 Required Message Rate

4.16 Parallel Message Processing
4.16.1 Serial Message Processing
4.16.2 Recovery Requirements

STUDY #28215999 715 PAGES 291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING 2019
4.17 Typical Message Patterns 231
4.18 Processors Manage Specified Message Flows 233
4.19 Middleware Messaging Technology Issues 234
 4.19.1 Report Messages Functions 236
 4.19.2 Real-Time Technology Issues 237
 4.19.3 MCA Exit Chaining 238
 4.19.4 Remove Channel Process Definition 238
 4.19.5 Improved Stop Channel Command 238
4.20 Dynamic Systems 238
 4.20.1 Line of Business Loses Control Of Hardware Servers 239
 4.20.2 Cultural Change Needed to Move to Cloud 241
 4.20.3 Adjusting to Rapid Change 243
 4.20.4 Amazon Web Services (AWS) Fully Automatic, Self-Healing, Networked Mega Systems Inside A Building 244
4.21 Mega Data Center Market Description and Market Dynamics 245
 4.21.1 Advantages of Mega Data Center Cloud 2.0: Multi-Threading 246
 4.21.2 Advantages of Mega Data Center Cloud 2.0: Scale 247
 4.21.3 Infrastructure Scale 249
 4.21.4 Intense Tide Of Data Causing Bottlenecks 250
 4.21.5 Application Integration Bare Metal vs. Container Controllers 251
4.22 Robust, Enterprise-Quality Fault Tolerance 251
 4.22.1 Cache / Queue 253
4.23 Multicast 254
4.24 Performance Optimization 255
 4.24.1 Fault Tolerance 256
 4.24.2 Gateways 258
5. MISSION CRITICAL MIDDLEWARE MESSAGING COMPANY DESCRIPTION 259
 5.1 360 Logica 259
 5.1.1 360logica Microservices Software Testing 259
 5.1.2 360logica Microservices Resources 260
 5.1.3 360logica Software Testing Services 260
 5.1.4 360logica Software Testing Company 264
 5.2 ActiveMQ 265
 5.3 Alphabet Apigee 267
 5.3.1 Apigee Manages Microservices Available as APIs 267
 5.4 AWS Kinesis 269
 5.4.1 Amazon Kinesis Analytics Product Details 270
 5.4.2 Amazon Kinesis Firehose Near Real-Time 274
 5.5 Apache 274
 5.5.1 How ASF And Apache® Projects Grow 276
 5.5.2 How the ASF and Apache Projects Are Governed 276
 5.5.3 Apache Kafka 277
 5.5.4 Kafka 280
 5.5.5 Kafka Streams API 281
 5.5.6 Kafka Streams API included with Apache Kafka and Confluent Enterprise 286
 5.5.7 Apache Storm 290
 5.5.8 Storm Distributed Messaging System 291
 5.5.9 Storm Publish-Subscribe Model 291
 5.5.10 Apache Thrift Communication Framework 292
 5.5.11 Apache Samza 292
 5.6 Bosch 293
 5.6.1 Bosch IoT Suite Services - Internet of Things Scenarios 293
 5.6.2 Bosch Vision for the Internet of Things (IoT) 300
 5.7 CA Technologies 301
 5.7.1 CA / Layer 7 302
 5.7.2 CA / Rally Software 303

STUDY #28215999 715 PAGES 291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING 2019
5.7.3 CA / Rally Software Solutions for Organizations 305
5.8 Cisco Systems 306
5.8.1 Cisco Business 306
5.8.2 Strategy and Focus Areas 307
5.8.3 Cisco Leverages Market Transitions 309
5.8.4 Cisco Addresses Digital Transformation 310
5.8.5 Cisco Software-Defined Networking 311
5.8.6 Cisco Cloud Strategy 312
5.8.7 Cisco Switching 313
5.8.8 Cisco Spark 315
5.8.9 Cisco Data Center 316
5.8.10 Cisco UCS Mini Edge Of The Network Solution 317
5.8.11 Cisco Competition 318
5.8.12 Cisco IoT 321
5.8.14 Cisco Spark Messaging 321
5.8.15 Cisco Spark End-to-End Encryption Of Content 322
5.8.16 Cisco Spark Encryption in Transit 323
5.8.17 Cisco Spark Authorization and Authentication 323
5.8.18 Cisco Spark Hybrid Data Security 324
5.8.19 Cisco IoT 325
5.9 Confluent 325
5.13.1 Confluent’s $50M for Open Source 327
5.9.1 Kafka / Redhat / Cloudera 328
5.9.2 Confluent Platform 329
5.9.3 Confluent Growth 330
5.9.4 Confluent 331
5.10 Crosscheck Networks 332
5.10.1 Crosscheck Networks API Testing and API Simulation 332
5.11 Dell / Boomi 333
5.13.1 VMWare Virtualizing Oracle / Dell 336
5.12 Elastic Stack Open Source 336
5.12.1 Elasticsearch Geo Data on Any Map 337
5.13 Fabasoft Group 338
5.14 Flink 339
5.14.1 Flink Streaming Partitioning 341
5.15 Fiorano 343
5.15.1 Fiorano Leadership In Enterprise Middleware 345
5.15.2 Fiorano Customers Worldwide 346
5.15.3 Fiorano API Management 348
5.15.4 FioranoMQ 350
5.15.5 FioranoMQ JMS Server 355
5.15.6 FioranoMQ JMS Server Business Benefits 355
5.15.7 FioranoMQ JMS Server High Performance 356
5.15.8 FioranoMQ JMS Server Tight Security 356
5.16 Fujitsu 357
5.16.1 Fujitsu Corporate Strategy 362
5.16.2 Fujitsu Interstage 363
5.16.3 Fujitsu Cloud Service 363
5.16.4 Fujitsu Systemwalker - Integrated Operation Management 366
5.16.5 Fujitsu open FT-Enterprise File Transfer 366
5.16.6 Fujitsu openFT-Enterprise File Transfer Achieve Security Level 1 367
5.16.7 Fujitsu Glovia 368
5.17 Goldman Sachs 371
5.18 HostBridge 372
5.19 IBM 374
5.19.1 Mission Critical Apache Kafka API Streaming 381

STUDY #28215999 715 PAGES 291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING
2019
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19.2</td>
<td>IBM MQ on AWS Cloud</td>
<td>384</td>
</tr>
<tr>
<td>5.19.3</td>
<td>IBM Strategy</td>
<td>385</td>
</tr>
<tr>
<td>5.19.4</td>
<td>IBM Hybrid Cloud Computing</td>
<td>388</td>
</tr>
<tr>
<td>5.19.5</td>
<td>IBM Middleware Software</td>
<td>405</td>
</tr>
<tr>
<td>5.19.6</td>
<td>IBM Revenue</td>
<td>407</td>
</tr>
<tr>
<td>5.19.7</td>
<td>IBM MQ Enabled for a Multicloud Connectivity</td>
<td>408</td>
</tr>
<tr>
<td>5.19.8</td>
<td>Cloud Based Application Integration</td>
<td>410</td>
</tr>
<tr>
<td>5.19.9</td>
<td>Data Center Architectures Evolving</td>
<td>414</td>
</tr>
<tr>
<td>5.19.10</td>
<td>IBM MQ</td>
<td>415</td>
</tr>
<tr>
<td>5.19.11</td>
<td>IBM MQ</td>
<td>418</td>
</tr>
<tr>
<td>5.19.12</td>
<td>IBM WebSphere MQ Telemetry Capabilities</td>
<td>420</td>
</tr>
<tr>
<td>5.19.13</td>
<td>IBM WebSphere MQ Integration File Transfer Business Value</td>
<td>422</td>
</tr>
<tr>
<td>5.19.14</td>
<td>IBM MQ Clustering</td>
<td>425</td>
</tr>
<tr>
<td>5.19.15</td>
<td>IBM MQ Hardware Cluster May Be Set Up In An Active-Passive Mode Or An Active-Active Mode</td>
<td>426</td>
</tr>
<tr>
<td>5.19.16</td>
<td>IBM MQ Supports Clustering Through Split Cluster Transmit Queues</td>
<td>427</td>
</tr>
<tr>
<td>5.19.17</td>
<td>IBM MQ End-To-End Security</td>
<td>428</td>
</tr>
<tr>
<td>5.19.18</td>
<td>IBM IoT Blockchain Distributed Replication</td>
<td>431</td>
</tr>
<tr>
<td>5.19.19</td>
<td>Web Transactions Implemented by IBM Blockchain</td>
<td>431</td>
</tr>
<tr>
<td>5.19.20</td>
<td>IBM Blockchain Interactions</td>
<td>438</td>
</tr>
<tr>
<td>5.19.21</td>
<td>IBM Blockchain Interactions</td>
<td>445</td>
</tr>
<tr>
<td>5.19.22</td>
<td>IBM Use Cases for IoT and Blockchain</td>
<td>446</td>
</tr>
<tr>
<td>5.19.23</td>
<td>Red Hat</td>
<td>447</td>
</tr>
<tr>
<td>5.19.24</td>
<td>Kafka / Redhat / Cloudera</td>
<td>448</td>
</tr>
<tr>
<td>5.19.25</td>
<td>Red Hat JBoss Enterprise Middleware Messaging</td>
<td>448</td>
</tr>
<tr>
<td>5.19.26</td>
<td>Red Hat Addresses Big Data, the Internet of Things (IoT), and Mobile</td>
<td>450</td>
</tr>
<tr>
<td>5.19.27</td>
<td>JBoss® Enterprise Middleware Messaging</td>
<td>453</td>
</tr>
<tr>
<td>5.19.28</td>
<td>Red Hat JBoss Customers</td>
<td>453</td>
</tr>
<tr>
<td>5.19.29</td>
<td>Red Hat AMQP Specification Messaging</td>
<td>456</td>
</tr>
<tr>
<td>5.20</td>
<td>Informatica</td>
<td>457</td>
</tr>
<tr>
<td>5.20.1</td>
<td>Informatica Master Data Management (MDM)</td>
<td>458</td>
</tr>
<tr>
<td>5.21</td>
<td>Information Builders / iWay Software</td>
<td>458</td>
</tr>
<tr>
<td>5.21.1</td>
<td>Information Builders / iWay Software</td>
<td>459</td>
</tr>
<tr>
<td>5.22</td>
<td>Intalio</td>
<td>459</td>
</tr>
<tr>
<td>5.23</td>
<td>JP Morgan Chase</td>
<td>460</td>
</tr>
<tr>
<td>5.23.1</td>
<td>Blockchain Asset Management</td>
<td>463</td>
</tr>
<tr>
<td>5.24</td>
<td>Microfocus / HPE</td>
<td>465</td>
</tr>
<tr>
<td>5.24.1</td>
<td>Integration of HPE Software into Micro Focus Running A Year Behind</td>
<td>465</td>
</tr>
<tr>
<td>5.24.2</td>
<td>Micro Focus Merger with the Software Business Segment of Hewlett Packard Enterprise (“HPE Software”)</td>
<td>466</td>
</tr>
<tr>
<td>5.24.3</td>
<td>Micro Focus CORBA</td>
<td>468</td>
</tr>
<tr>
<td>5.24.4</td>
<td>Micro Focus Artix</td>
<td>469</td>
</tr>
<tr>
<td>5.24.5</td>
<td>Micro Focus OpenFusion</td>
<td>470</td>
</tr>
<tr>
<td>5.24.6</td>
<td>Micro Focus Orbacus</td>
<td>471</td>
</tr>
<tr>
<td>5.24.7</td>
<td>Micro Focus Orbix</td>
<td>471</td>
</tr>
<tr>
<td>5.24.8</td>
<td>Micro Focus VisiBroker</td>
<td>471</td>
</tr>
<tr>
<td>5.24.9</td>
<td>Microfocus HPE NonStop Middleware and Java</td>
<td>472</td>
</tr>
<tr>
<td>5.24.10</td>
<td>Hewlett Packard Database and Middleware Automation</td>
<td>474</td>
</tr>
<tr>
<td>5.25</td>
<td>Microsoft Azure</td>
<td>476</td>
</tr>
<tr>
<td>5.25.1</td>
<td>Microsoft Azure</td>
<td>477</td>
</tr>
<tr>
<td>5.25.2</td>
<td>Azure Service Fabric</td>
<td>479</td>
</tr>
<tr>
<td>5.25.3</td>
<td>Microsoft Data Center, Dublin, 550,000 SF</td>
<td>481</td>
</tr>
<tr>
<td>5.25.4</td>
<td>Microsoft Data Center Container Area in Chicago.</td>
<td>482</td>
</tr>
<tr>
<td>5.25.5</td>
<td>Microsoft Quincy Data Centers, 470,000 Square Feet</td>
<td>484</td>
</tr>
<tr>
<td>5.25.6</td>
<td>. Microsoft San Antonio Data Center, 470,000 SF</td>
<td>485</td>
</tr>
<tr>
<td>5.25.7</td>
<td>Microsoft 3rd Data Center in Bexar Could Employ 150</td>
<td>486</td>
</tr>
<tr>
<td>5.25.8</td>
<td>Microsoft Builds the Intelligent Cloud Platform</td>
<td>487</td>
</tr>
<tr>
<td>5.25.9</td>
<td>Microsoft's datacenter footprint</td>
<td>488</td>
</tr>
</tbody>
</table>
5.34.5 Solace Reliable Messaging
5.34.6 Solace Systems Software API Connects to a Messaging Appliance
5.34.7 Solace Systems Embedded Support For Point-To-Point ‘Unicast’ Distribution
5.34.8 Solace Guaranteed Messaging
5.34.9 Solace Systems Redundant Architecture for HA, FT and DR (1 and 2)
5.34.10 Solace JMS Messaging
5.34.11 Solace Systems Non-Persistent Messaging
5.34.12 Solace Systems Persistent Messaging
5.34.13 Solace Systems Persistent and Non-Persistent on One Appliance
5.34.14 Solace IPC Shared Memory Messaging

5.35 Tibco Software
5.35.1 TIBCO ActiveSpaces®
5.35.2 TIBCO BusinessEvents®
5.35.3 TIBCO® Messaging
5.35.4 Tibco / Change Healthcare Claims And Payments Network On Amazon Web Services
5.35.5 TIBCO Software Mashery Professional API Management Solution
5.35.6 Tibco Software Functionality Provided by the Tibco ActiveMatrix
5.35.7 Tibco Revenue
5.35.8 Tibco Software
5.35.9 Tibco Software Customers
5.35.10 Tibco Event-Enabled Enterprise Platform
5.35.11 Tibco Platform
5.35.12 Tibco Microservices Development
5.35.13 Tibco Cloud Computing Environments
5.35.14 Tibco FTL
5.35.15 Tibco e-FTL Messaging Middleware
5.35.16 Tibco Enterprise Message Service
5.35.17 Tibco Enterprise-Class Messaging Performance
5.35.18 Tibco Reliable, Persistent Messaging
5.35.19 Tibco Rendezvous Publish Subscribe Messaging
5.35.20 Tibco Web Messaging
5.35.21 Tibco Messaging Backbone

5.36 Tray.io
5.37 UIB
5.38 WSO2
5.38.1 WSO2 Products
5.38.2 WSO2 Open Source and Standards
5.38.3 SEERC Technology Research Center Uses WSO2 for Governance Registry
5.38.4 WSO2 Middleware Platform
5.38.5 WSO2 Message Broker
5.39 Selected Messaging Middleware Companies

6. BUSINESS PROCESS MANAGEMENT COMPANY PROFILES

6.1 Adobe
6.1.1 Adobe Creative Cloud
6.1.2 Adobe Digital Publishing Suite
6.1.3 Adobe Photoshop
6.1.4 Adobe Acrobat
6.1.5 Adobe Edge Tools & Services
6.1.6 Adobe Digital Marketing

6.2 AgilePoint

6.3 Appian

6.4 Aurea
6.4.1 Aurea Software

6.5 BigAgil

6.6 BizFlow

6.7 BMC Middleware Management
<table>
<thead>
<tr>
<th>Section</th>
<th>Middleware Product/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.1</td>
<td>BMC BladeLogic Middleware Automation</td>
</tr>
<tr>
<td>6.7.2</td>
<td>BMC Improves Productivity For Release Process Documentation</td>
</tr>
<tr>
<td>6.7.3</td>
<td>BMC Middleware Administration</td>
</tr>
<tr>
<td>6.7.4</td>
<td>BMC Middleware Monitoring</td>
</tr>
<tr>
<td>6.7.5</td>
<td>BMC Application Transaction Tracing</td>
</tr>
<tr>
<td>6.8</td>
<td>BonitaSoft</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Bonita Open Source BPM Software</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Bonita Open Solution 5</td>
</tr>
<tr>
<td>6.9</td>
<td>Kofax</td>
</tr>
<tr>
<td>6.10</td>
<td>Information Builders WebFOCUS</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Information Builders / iWay Middleware Software</td>
</tr>
<tr>
<td>6.10.2</td>
<td>iWay Enterprise Integration Middleware</td>
</tr>
<tr>
<td>6.10.3</td>
<td>iWay Network Computing</td>
</tr>
<tr>
<td>6.10.4</td>
<td>Information Builders iWay EDA for Networked Computing</td>
</tr>
<tr>
<td>6.10.5</td>
<td>Information Builders iWay Java for Web-Enterprise Convergence</td>
</tr>
<tr>
<td>6.10.6</td>
<td>Information Builders / iWay Middleware Provides The Plumbing</td>
</tr>
<tr>
<td>6.10.7</td>
<td>Information Builders/iWay SOA, EDA, and ESB Middleware Solutions</td>
</tr>
<tr>
<td>6.11</td>
<td>Managed Methods</td>
</tr>
<tr>
<td>6.11.1</td>
<td>Managed Methods Solutions</td>
</tr>
<tr>
<td>6.12</td>
<td>Mega</td>
</tr>
<tr>
<td>6.12.1</td>
<td>Mega Solutions</td>
</tr>
<tr>
<td>6.12.2</td>
<td>Mega Solutions Customers</td>
</tr>
<tr>
<td>6.13</td>
<td>Mendix</td>
</tr>
<tr>
<td>6.14</td>
<td>Nastel AutoPilote</td>
</tr>
<tr>
<td>6.14.1</td>
<td>Nastel Middleware Monitoring and Management</td>
</tr>
<tr>
<td>6.15</td>
<td>NEC RFID Middleware Products</td>
</tr>
<tr>
<td>6.15.1</td>
<td>NEC RFID Middleware</td>
</tr>
<tr>
<td>6.15.2</td>
<td>NEC WebOTX RFID Manager Middleware</td>
</tr>
<tr>
<td>6.16</td>
<td>OpenText Content Middleware</td>
</tr>
<tr>
<td>6.16.1</td>
<td>OpenText Platform</td>
</tr>
<tr>
<td>6.16.2</td>
<td>OpenText Comprehensive Information Integration Platform</td>
</tr>
<tr>
<td>6.16.3</td>
<td>OpenText Comprehensive Information Integration Value</td>
</tr>
<tr>
<td>6.16.4</td>
<td>OpenText GSX B2B Integration Network</td>
</tr>
<tr>
<td>6.16.5</td>
<td>GSX Monitor</td>
</tr>
<tr>
<td>6.16.6</td>
<td>OpenText Actuate</td>
</tr>
<tr>
<td>6.16.7</td>
<td>Actuate Core Strengths</td>
</tr>
<tr>
<td>6.16.8</td>
<td>OpenText Target Markets</td>
</tr>
<tr>
<td>6.16.9</td>
<td>OpenText / Cordys</td>
</tr>
<tr>
<td>6.16.10</td>
<td>OpenText Acquisition of GXS Group</td>
</tr>
<tr>
<td>5.32.7</td>
<td>GSX</td>
</tr>
<tr>
<td>6.17</td>
<td>PegaSystems</td>
</tr>
<tr>
<td>6.17.1</td>
<td>Pega Exchange' for BPM and SOA-</td>
</tr>
<tr>
<td>6.18</td>
<td>Perficient</td>
</tr>
<tr>
<td>6.18.1</td>
<td>Perficient ProHealth Care Drives Population Health Management through Epic’s Cogito Data Warehouse</td>
</tr>
<tr>
<td>6.19</td>
<td>PNM Soft</td>
</tr>
<tr>
<td>6.20</td>
<td>Progress Software</td>
</tr>
<tr>
<td>6.21</td>
<td>Rocket Software Janus Middleware</td>
</tr>
<tr>
<td>6.21.1</td>
<td>Rocket Software Encryption</td>
</tr>
<tr>
<td>6.21.2</td>
<td>Rocket Software Authentication</td>
</tr>
<tr>
<td>6.21.3</td>
<td>Rocket Software Efficiency</td>
</tr>
<tr>
<td>6.21.4</td>
<td>Rocket Software Running Secure Model 204 Web Servers</td>
</tr>
<tr>
<td>6.22</td>
<td>SAP Application Software Leverages IBM MQ</td>
</tr>
<tr>
<td>6.23</td>
<td>Workday Cloud Platform</td>
</tr>
<tr>
<td>6.23.1</td>
<td>Workday Partnership with Microsoft Leverages Systems Integration</td>
</tr>
<tr>
<td>6.23.2</td>
<td>Cloud Orchestration Platform Used for Integrations To And From Workday</td>
</tr>
</tbody>
</table>

STUDY #28215999

715 PAGES
291 TABLES AND FIGURES

$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING

WinterGreen Research, INC.
List of Figures

Figure 1. Mission Critical Messaging and Microservices Market Shares, Dollars, 2018 54
Figure 2. Messaging Middleware Market Driving Forces 55
Figure 3. Middleware Messaging Market Factors 58
Figure 4. Web Transactions Implemented by IBM Blockchain 60
Figure 5. A Distributed IoT Shared Ledger Built On IBM Blockchain Offers Visibility, Trust, And Permanence 63
Figure 6. A Shared Ledger Built on Blockchain Offers Visibility, Trust, and Permanence 63
Figure 7. Blockchain Attributes Framework: 64
Figure 8. IBM Blockchain Interactions 66
Figure 9. Middleware Messaging Market Totals, Dollars, Worldwide, 2019-2025 72
Figure 10. Google Clos Multistage Switching Network 77
Figure 11. Typical Mission Critical Messaging Functions 81
Figure 12. Kafka API Streaming Functions 83
Figure 13. Kafka API Message Streaming Platform 84
Figure 14. Apache Kafka Distributed Streaming Platform Key Capabilities 86
Figure 15. Internet of Things (IoT) Market Driving Forces 88
Figure 16. Key Areas Of The IoT Market 91
Figure 17. Kafka Core APIs: 93
Figure 18. Kafka Cluster: 94
Figure 19. IBM Microservices Foundation Business, Infrastructure, and Data Information Architecture 96
Figure 20. Mission Critical Messaging As A Base For Integration Software Provides A Base For Application Connectivity 98
Figure 21. Mission Critical Messaging Integration Functions 98
Figure 22. Messaging Middleware Messaging Trends 100
Figure 23. Mission Critical Messaging Market Dynamics 102
Figure 24. Private Cloud Attributes 103
Figure 25. Private Cloud Computing Model Characteristics 104
Figure 26. Messaging Middleware Market Driving Forces 110
Figure 27. Middleware Messaging Market Factors 112
Figure 28. Mission Critical Messaging and Micro Services Market Driving Forces 113
Figure 29. Mission Critical Messaging and Microservices Market Shares, Dollars, 2018 117
Figure 30. Mission Critical Messaging and Cloud API Integration Streaming Tools, Dollars, Worldwide, 2018 121
Figure 31. Mission Critical Messaging and Cloud API Integration Streaming Tools, Dollars, Worldwide, 2018 122
Figure 32. Middleware Messaging Market Totals, Dollars, Worldwide, 2019-2025 128
Figure 33. Middleware Messaging Market Totals, Dollars, Worldwide, 2019-2025 129
Figure 34. Mission Critical Messaging Market Segments, Dollars and Units, Worldwide, 2019-2025 130
Figure 35. Mission Critical Messaging Market Segments Dollars and Units, Worldwide, 2019-2025 134
Figure 36. Middleware Messaging Applications Market Segments, Dollars, Worldwide, 2019-2025 137
Figure 37. Middleware Messaging Applications Market Segments, Percent, Worldwide, 2019-2025 138
Figure 38. Mission Critical Messaging Market Units, Worldwide, 2019-2025
Figure 39. Market Driving Forces For Real Time Computing
Figure 40. Market Driving Forces For microservices
Figure 41. Mission Critical Messaging Growth Factors
Figure 42. Mission Critical Messaging Benefits
Figure 43. Messaging Middleware Market Components
Figure 44. Mission Critical Messaging Financial Services Applications
Figure 45. Mission Critical Messaging Security Aspects
Figure 46. Mission Critical Telecommunications Messaging Applications
Figure 47. Mission Critical Government Messaging Applications
Figure 48. Blockchain Ledger Market Driving Forces
Figure 49. Major Growth Drivers Of The Blockchain Market
Figure 50. Mission Critical Messaging and API Integration Streaming Tools Regional Markets, 2018
Figure 51. Mission Critical Messaging and API Integration Streaming Tools Regional Market Segments, 2018
Figure 52. Microservices Compute Options
Figure 53. Confluent Kafka Supports Continuous Queries
Figure 54. Kafka Streams API Continuous Transformations
Figure 55. Kafka Streams API Event Triggered Processes
Figure 56. Kafka Streams API Apps and Services
Figure 57. Kafka Streaming Platform Design
Figure 58. Kafka Messaging System, Provides A Structured Commit Log Of Updates
Figure 59. Kafka Architecture Persistence
Figure 60. Kafka LinkedIn Capture Of A Stream Of Views To Jobs
Figure 61. Kafka Streaming Enterprise Publish Subscribe Messaging Enhancements
Figure 62. Kafka Streaming System Provides Built-In Stream Processing Capabilities
Figure 63. Supernap, Las Vegas, 407,000 sf
Figure 64. DuPONT FABROS CH1, ELK GROVE VILLAGE, Ill. 485,000 SF
Figure 65. 538,000SF: i/o Data Centers and Microsoft Phoenix One, Phoenix, Ariz.
Figure 66. Phoenix, Arizona i/o Data Center Design Innovations
Figure 67. Next Generation Data Europe, Wales 750,000 SF
Figure 68. NAP Of The Americas, Miami, 750,000 SF
Figure 69. QTS Metro Data Center, Atlanta, 990,000 SF
Figure 70. 350 East Cermak, Chicago, 1.1 Million Square Feet
Figure 71. Lakeside Technology Center
Figure 72. Data Center Multiple-Facility Campuses Feature Half Million SF
Figure 73. Web Services Transport Comparison HTTP and IBM MQ
Figure 74. IBM WebSphere MQ Web Services Transport
Figure 75. Service Requestor and Service Provider Layers
Figure 76. Layered Architecture For IBM JMS Providers
Figure 77. IBM WebSphere MQ Layered Architecture Objectives:
Figure 78. Relationship Between WebSphere MQ Classes for JMS and WebSphere
Figure 79. Deciding Whether To Use Read Ahead Using IBM WebSphere MQ
Figure 80. Mission Critical Messaging As A Base For microservices Software Used to Implement Process Flexibility
Figure 81. Mission Critical Messaging ESB Functions
Figure 82. Mission Critical Messaging As A Base For Integration Software Provides A Base For Application Connectivity
Figure 83. Mission Critical Messaging Integration Functions
Figure 84. Open Systems Message Queuing Protocol Key Capabilities

STUDY #28215999 715 PAGES 291 TABLES AND FIGURES
$4,400 SINGLE TEAM OF USERS -- $8,800 WEB SITE POSTING 2019
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>Messaging Open Software Business Case</td>
<td>230</td>
</tr>
<tr>
<td>86</td>
<td>Advanced Message Queuing Key Features</td>
<td>230</td>
</tr>
<tr>
<td>87</td>
<td>Aspects Of Data Streaming Management</td>
<td>236</td>
</tr>
<tr>
<td>88</td>
<td>Mission Critical Message Throughput Variables</td>
<td>242</td>
</tr>
<tr>
<td>89</td>
<td>Typical Message Flow Characteristics</td>
<td>248</td>
</tr>
<tr>
<td>90</td>
<td>Middleware Messaging Technology Issues</td>
<td>250</td>
</tr>
<tr>
<td>91</td>
<td>Middleware Messaging Technology Management</td>
<td>251</td>
</tr>
<tr>
<td>92</td>
<td>AWS Market Leader In Cloud Computing</td>
<td>259</td>
</tr>
<tr>
<td>93</td>
<td>Key Challenges of Enterprise IT Datacenters:</td>
<td>261</td>
</tr>
<tr>
<td>94</td>
<td>Multi-threading Manages Pathways From One Node To Another Node</td>
<td>262</td>
</tr>
<tr>
<td>95</td>
<td>Google Mega Data Center Scale</td>
<td>263</td>
</tr>
<tr>
<td>96</td>
<td>Key Advantage of Cloud 2.0 Mega IT Datacenters:</td>
<td>264</td>
</tr>
<tr>
<td>97</td>
<td>NTT RagingWire Ashburn Va2 Data Center</td>
<td>265</td>
</tr>
<tr>
<td>98</td>
<td>AWS Region Diagram</td>
<td>266</td>
</tr>
<tr>
<td>99</td>
<td>Automatic Detection And Recovery From Network And System Failure</td>
<td>268</td>
</tr>
<tr>
<td>100</td>
<td>High Performance And Real-Time Message Throughput</td>
<td>272</td>
</tr>
<tr>
<td>101</td>
<td>Messaging Fault Tolerance Features</td>
<td>273</td>
</tr>
<tr>
<td>102</td>
<td>360logica Microservices Services:</td>
<td>277</td>
</tr>
<tr>
<td>103</td>
<td>360Logica Microservices Target Markets</td>
<td>278</td>
</tr>
<tr>
<td>104</td>
<td>360logica microservices Services Positioning:</td>
<td>279</td>
</tr>
<tr>
<td>105</td>
<td>Apache ActiveMQ Features</td>
<td>281</td>
</tr>
<tr>
<td>106</td>
<td>Apigee Hybrid Capabilities:</td>
<td>284</td>
</tr>
<tr>
<td>107</td>
<td>Amazon Kinesis Analytics Key Features</td>
<td>287</td>
</tr>
<tr>
<td>108</td>
<td>Amazon Kinesis Firehose</td>
<td>289</td>
</tr>
<tr>
<td>109</td>
<td>Apache Kafka Distributed Messaging System Designed For Streams</td>
<td>293</td>
</tr>
<tr>
<td>110</td>
<td>Apache Kafka Enterprise Messaging Package</td>
<td>295</td>
</tr>
<tr>
<td>111</td>
<td>Internet of Things (IoT) Applications Market Generating Log Messages</td>
<td>299</td>
</tr>
<tr>
<td>112</td>
<td>Kafka Request Response Enterprise Service Bus Application</td>
<td>301</td>
</tr>
<tr>
<td>113</td>
<td>Streams API in Kafka: The Power without the Weight</td>
<td>303</td>
</tr>
<tr>
<td>114</td>
<td>Streams API in Kafka Functions</td>
<td>304</td>
</tr>
<tr>
<td>115</td>
<td>Confluent Kafka Stream-Based Microservices</td>
<td>305</td>
</tr>
<tr>
<td>116</td>
<td>Software Services of the Bosch IoT Suite</td>
<td>310</td>
</tr>
<tr>
<td>117</td>
<td>Bosch IoT Suite Connecting Five Million Devices And Machines</td>
<td>311</td>
</tr>
<tr>
<td>118</td>
<td>Bosch IoT Suite Services</td>
<td>312</td>
</tr>
<tr>
<td>119</td>
<td>Bosch IoT Suite Device Connection Features</td>
<td>313</td>
</tr>
<tr>
<td>120</td>
<td>Bosch IoT Suite Device Connection Functions</td>
<td>314</td>
</tr>
<tr>
<td>121</td>
<td>Bosch IoT Global System Integrator Partnerships</td>
<td>314</td>
</tr>
<tr>
<td>122</td>
<td>Bosch IoT Technology Partners:</td>
<td>315</td>
</tr>
<tr>
<td>123</td>
<td>Bosch IoT Members</td>
<td>315</td>
</tr>
<tr>
<td>124</td>
<td>Bosch IoT Joint Research Ventures</td>
<td>316</td>
</tr>
<tr>
<td>125</td>
<td>Rally Software Platform Functions</td>
<td>320</td>
</tr>
<tr>
<td>126</td>
<td>Cisco Technology Foundation For Digital Transformation</td>
<td>327</td>
</tr>
<tr>
<td>127</td>
<td>Cisco Unified Computing System Portfolio Of Solutions Functions</td>
<td>333</td>
</tr>
<tr>
<td>128</td>
<td>Cisco Spark Functions</td>
<td>338</td>
</tr>
<tr>
<td>129</td>
<td>Confluent Partners</td>
<td>342</td>
</tr>
<tr>
<td>130</td>
<td>Confluent Kafka Ecosystem Of Data Pipelines And Topology</td>
<td>347</td>
</tr>
<tr>
<td>131</td>
<td>Dell Boomi Customer Base</td>
<td>351</td>
</tr>
<tr>
<td>132</td>
<td>VMWare Virtualization Messaging Capabilities</td>
<td>352</td>
</tr>
<tr>
<td>133</td>
<td>Kibana Core Ships With The Classics: Histograms, Line Graphs, Pie Charts, Sunbursts. Leverage Aggregation Capabilities Of Elasticsearch</td>
<td>353</td>
</tr>
<tr>
<td>134</td>
<td>Elasticsearch Visualizes Geo Data on Any Map</td>
<td>354</td>
</tr>
</tbody>
</table>
Figure 135. Firoano Microservices Architecture
Figure 136. Firoano API Management Platform Functions:
Figure 137. FiroanoMQ® Java Message Service (JMS) Compliant Platform
Figure 138. Firoano enterprise Messaging Middleware Backbone Features
Figure 139. Firoano Messaging Middleware Features
Figure 140. Firoano Messaging Middleware Continuous Availability
Figure 141. Firoano Messaging Middleware Linear Scalability
Figure 142. Firoano Messaging Middleware Robust Security
Figure 143. Firoano Messaging Middleware Global Manageability
Figure 144. Fujitsu Global Alliances
Figure 145. Fujitsu Facts
Figure 146. Fujitsu openFT Features
Figure 147. GLOVIA G2 or GLOVIA OM manufacturing ERP software
Figure 148. Fujitsu Glovia Functions
Figure 149. HostBridge Mainframe CICS Integration Functions
Figure 150. IBM Business Goals
Figure 151. IBM MQ Messaging Functions
Figure 152. IBM MQ Functions:
Figure 153. Typical Mission Critical Messaging Functions
Figure 154. IBM Marketing Customer Transformation Functions
Figure 155. IBM Cloudbased App Offerings
Figure 156. IBM Cloud & Smarter Infrastructure Featured Solutions
Figure 157. IBM Cross Platform, Cross Application Messaging
Figure 158. Cloud 2.0 Mega Data Center Market Driving Forces
Figure 159. IBM MQ Tools and Resources:
Figure 160. IBM MQ WMQ providing a Universal Messaging Backbone
Figure 161. IBM WebSphere MQ Goals For Business Resilience in a Sysplex QSG (Queue Sharing Group)
Figure 162. IBM WebSphere MQ Telemetry Capabilities
Figure 163. IBM WebSphere MQ Integration Business Value
Figure 164. IBM WebSphere MQ Middleware Development Facilities
Figure 165. IBM MQ Remote Network Administration And Configuration
Figure 166. IBM MQ Clustering
Figure 167. IBM MQ End-To-End Security
Figure 168. IBM MQ Web Services
Figure 169. IBM WebSphere MQ Integration Supported Environments
Figure 170. Web Transactions Implemented by IBM Blockchain
Figure 171. A Distributed IoT Shared Ledger Built On IBM Blockchain Offers Visibility, Trust, And Permanence
Figure 172. A Shared Ledger Built on Blockchain Offers Visibility, Trust, and Permanence
Figure 173. Blockchain Attributes Framework:
Figure 174. IBM Blockchain Interactions
Figure 175. Web Transactions Implemented by IBM Blockchain
Figure 176. A Distributed IoT Shared Ledger Built On IBM Blockchain Offers Visibility, Trust, And Permanence
Figure 177. A Shared Ledger Built on Blockchain Offers Visibility, Trust, and Permanence
Figure 178. Blockchain Attributes Framework:
Figure 179. IBM Blockchain Interactions
Figure 180. Red Hat JBoss Middleware Portfolio
Figure 181. Red Hat JBoss Enterprise Middleware Messaging Functions
Figure 182. Red Hat JBoss Open Source Choice Functions
Figure 183. Red Hat JBoss Portal Platform Services
Figure 184. Red Hat® Enterprise MRG Messaging Enterprise Requirements Features And Performance
Figure 185. Chase Manhattan Four Waves Of Anticipated Blockchain Deployments
Figure 186. Blockchain Drivers of Cost Saving 480
Figure 187. MicroFocus Metrics 483
Figure 188. Micro Focus Artix Functions 485
Figure 189. Micro Focus VisiBroker Object Request Broker (ORB) infrastructure Functions 488
Figure 190. New features in HPE NonStop iTP Secure WebServer and HPE NonStop iTP 489
Figure 191. HPE Database And Middleware Automation (DMA) Functions 491
Figure 192. HPE Middleware Automation Key Benefits 492
Figure 193. Azure Service Fabric Functions 492
Figure 194. Microsoft Azure Service Fabric 495
Figure 195. Microsoft Data Center, Dublin, 550,000 Sf 497
Figure 196. Container Area In The Microsoft Data Center In Chicago 498
Figure 197. An aerial view of the Microsoft data center in Quincy, Washington 500
Figure 198. . Microsoft San Antonio Data Centers, 470,000 SF 501
Figure 199. Microsoft 3rd Data Center in Bexar Could Employ 150 502
Figure 200. Microsoft Middleware Key Elements 507
Figure 201. Microsoft Middleware IT Pro Management Tools 507
Figure 202. Microsoft Middleware Enterprise-Ready Platform 507
Figure 203. Microsoft Middleware Foundation Developer Frameworks 511
Figure 204. Microsoft Middleware Foundation Modules 512
Figure 205. Microsoft Infrastructure Middleware Offerings Key Elements 513
Figure 206. Microsoft Infrastructure Middleware Modules 514
Figure 207. Microsoft.NET Framework Benefits 515
Figure 208. Nastel Technologies Customers 528
Figure 209. Oracle Systems Positioning 532
Figure 210. Oracle Middleware Messaging 535
Figure 211. Oracle Middleware Category Groups 536
Figure 212. Oracle Message Oriented Middleware (MOM)-Based System Asynchronous Exchange Of Messages 537
Figure 213. Oracle Combining RPC and MOM Systems 540
Figure 214. RabbitMQ Features 545
Figure 215. RabbitMQ Feature Descriptions 546
Figure 216. Pivotal RabbitMQ Functions 547
Figure 217. Pivotal RabbitMQ Features 549
Figure 218. Pivotal RabbitMQ Clustering Functions 550
Figure 219. Software AG's webMethods Integration Platform Key Benefits 559
Figure 220. Software AG Enterprise-Class Messaging Styles: 561
Figure 221. Software AG webMethods Broker Messages Configuration 561
Figure 222. Software AG webMethods Broker Message Types 563
Figure 223. Software AG webMethods Broker Messaging Quality-Of-Service Requirements Features 564
Figure 224. Solace Systems Message Exchange Patterns 565
Figure 225. Solace Middleware Functions 567
Figure 226. Solace Peer to Peer Messaging 569
Figure 227. Solace Systems Messaging APIs Robust And Uniform Client Access 571
Figure 228. Solace Systems Embedded Support For Point-To-Point ‘Unicast’ 573
Figure 229. Solace Guaranteed Messaging 574
Figure 230. Solace Systems Appliance 576
Figure 231. Solace High-Performance JMS Messaging Solution 578
Figure 232. Solace IPC Shared Memory Messaging 580
Figure 233. Benefits of Solace’s High-Performance Messaging Solution 581
Figure 234. Tibco Software to Interconnect Everything 586
Figure 235. Tibco Systems Augment Intelligence 587
Figure 236. Tibco Products 592
Figure 237. Tibco Microservices Benefits
Figure 238. Tibco FTL Benefits
Figure 239. Tibco e-FTL Message Middleware Benefits
Figure 240. TIBCO's Messaging Software Benefits
Figure 241. Tibco Messaging Solutions Value
Figure 242. Tibco Messaging Software Advantages
Figure 243. Tibco FTL Message Switch Benefits
Figure 244. Tibco Rendezvous Publish Subscribe Messaging Benefits
Figure 245. TIBCO Web Messaging Benefits
Figure 246. TIBCO Enterprise Message Functions
Figure 247. Tibco Messaging Solutions Positioning
Figure 248. Tibco Common Backbone for Services and Real Time Information Flow
Figure 249. Tray.io Customers
Figure 250. Tray.io API integration
Figure 251. Tray.io CSV Data Automation
Figure 252. Tray.io Database Integration
Figure 253. WSO2 API Manager is a 100% Open Source Enterprise-Class Solution
Figure 254. WSO2 Middleware Open Source Benefits
Figure 255. Adobe Digital Marketing Cloud Solutions:
Figure 256. Adobe Digital Marketing Facts:
Figure 257. Adobe Digital Media Aspects:
Figure 258. Appian Technology
Figure 259. BMC Middleware Software Management Solutions Positioning
Figure 260. BMC TrueSight Middleware Management Functions
Figure 261. BMC BladeLogic Middleware Automation
Figure 262. BMC Reduces Application Release Cycles from Weeks To Hours
Figure 263. BMC Solution Functions
Figure 264. BMC Middleware Administration Functions
Figure 265. BMC Middleware Management Features
Figure 266. BMC Middleware Management Solution Function:
Figure 267. BMC Middleware Management Solution Features:
Figure 268. BMC Application Transaction Tracing Functions:
Figure 269. iWay Middleware, EDA Software Glue
Figure 270. Information Builders /iWay WebFOCUS Process
Figure 271. Information Builders/iWay SOA, EDA, and ESB Middleware Solutions
Figure 272. Managed Methods Functions
Figure 273. Mega Operational Excellence for Customers
Figure 274. Nastel AutoPilot Middleware Management Functions
Figure 275. Nastel AutoPilot Solution Features
Figure 276. Nastel AutoPilot Solution Functions
Figure 277. RFID Product Metrics
Figure 278. NEC RFID Middleware Product Tracking Industry Segments
Figure 279. NEC WebOTX RFID Manager Enterprise Characteristics
Figure 280. GSX OpenText B2B Integration Network Functions
Figure 281. GSX Monitor Features
Figure 282. GSX Monitor Functions
Figure 283. GSX Monitor Benefits
Figure 284. OpenText Target Markets
Figure 285. Rocket Software Janus TCP/IP Base
Figure 286. Rocket Software Janus TCP/IP Functions
Figure 287. Rocket Software Janus Network Security Architecture
| Figure 288. | Workday Integration Cloud Platform Functions: | 708 |
| Figure 289. | Workday’s Integration Cloud Platform Components | 710 |
| Figure 290. | Workday’s Integration Cloud Platform | 711 |
| Figure 291. | Workday ESB Process Flows | 712 |
WinterGreen Research, INC.

ABOUT THE COMPANY

WinterGreen Research, research strategy relates to identifying market trends through reading and interviewing opinion leaders. By using analysis of published materials, interview material, private research, detailed research, social network materials, blogs, and electronic analytics, the market size, shares, and trends are identified. Analysis of the published materials and interviews permits WinterGreen Research senior analysts to learn a lot more about markets. Discovering, tracking, and thinking about market trends is a high priority at WinterGreen Research. As with all research, the value proposition for competitive analysis comes from intellectual input.

WinterGreen Research, founded in 1985, provides strategic market assessments in telecommunications, communications equipment, health care, Software, Internet, Energy Generation, Energy Storage, Renewable energy, and advanced computer technology. Industry reports focus on opportunities that expand existing markets or develop major new markets. The reports access new product and service positioning strategies, new and evolving technologies, and technological impact on products, services, and markets. Innovation that drives markets is explored. Market shares are provided. Leading market participants are profiled, and their marketing strategies, acquisitions, and strategic alliances are discussed. The principals of WinterGreen Research have been involved in analysis and forecasting of international business opportunities in telecommunications and advanced computer technology markets for over 30 years.

The studies provide primary analytical insight about the market participants. By publishing material relevant to the positioning of each company, readers can look at the basis for analysis. By providing descriptions of each major participant in the market, the reader is not dependent on analyst assumptions, the information backing the assumptions is provided, permitting readers to examine the basis for the conclusions.

WinterGreen Research is positioned to help customers facing challenges that define the modern enterprises. The increasingly global nature of science, technology and engineering is a reflection of the implementation of the globally integrated enterprise. Customers trust wintergreen research to work alongside them to ensure the success of the participation in a particular market segment.

WinterGreen Research supports various market segment programs; provides trusted technical services to the marketing departments. It carries out accurate market share and forecast analysis services for a range of commercial and government customers globally. These are all vital market research support solutions requiring trust and integrity.
ABOUT THE PRINCIPAL AUTHORS

Susan Eustis, President, co-founder of WinterGreen Research is a senior analyst. She has done research in communications and computer markets and applications. She holds several patents in microcomputing and parallel processing. She has the original patents in electronic voting machines. She has new patent applications in format varying, multiprocessing, and electronic voting. She is the author of recent studies of the Solar Renewable Energy, Wind Energy, Thin Film Batteries, Business Process Management marketing strategies, Internet equipment, biometrics, a study of Internet Equipment, Worldwide Telecommunications Equipment, Top Ten Telecommunications, Digital Loop Carrier, Web Hosting, Web Services, and Application Integration markets. Ms. Eustis is a graduate of Barnard College. Worldwide Who’s Who named her Top Female CEO of 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019. She has been twice featured on the cover of the Women of Distinction magazine. She was cited in a recent Time Magazine cover article and major media Washington Post, London Times, New York Times, LA Times, and WSJ articles on Youth Sports market growth. She has been quoted as a reliable industry source in Barron’s and by Bloomberg relating to blockchain. She is head of the GBA blockchain group on elections systems.

About the WinterGreen Research Team: The WinterGreen Research Team is comprised of senior analysts that prepare the market research and analysis that is offered to the client and developed using an iterative process to achieve a final study. Typical projects include providing market/viability research. The team can look at how drones can be applied to critical infrastructures safety, including: type of market existing, Barriers, Forecast demand and competitors, SWOT and competitive advantages, Price Analysis, product design recommendations (marketing orientation).

Research is typically for many different regions or localities, for example EU countries including Spain, UK, Nordic, Germany, and France. Typical projects profile the United States and areas of Asia. It is common to three representative countries from South America, Brazil, Argentina, Chile, and Mexico. Representative countries from Asia APAC typically include Japan, China, India, and Australia.

Critical infrastructure safety, including: type of market existing, barriers to entry and to faithful execution of product provision, forecast of demand, market share, SWOT, competitive advantage of major competitors, identification of new technologies and new companies, price performance analysis, product design recommendations, and marketing considerations are typical topics covered.