Optical Components: Market Shares, Strategies, and Forecasts, Worldwide, 2013 to 2019

$3800 - Single Copy or $7600 - Web Posting | Report # SH25405881 | 567 Pages | 231 Tables and Figures | 2013

Optical Components: Transport Efficiency Provided to Carry Broadband

Check Out These Key Topics
Optical Transceiver
Optical Transmitter
Optical Receiver
Optical Transponder
Optical Components
Optical Amplifier
Optical Subsystems
SONET/SDH
Ethernet
Fibre Channel
CWDM
DWDM
FTTx
Transceivers
Optical interconnect
Crosspoint Switch
Optimized optical transport infrastructure
100 Gigabit Ethernet
40 Gigabit Ethernet
High-Bandwidth
Fiber Transmission
Spectral Efficiency
Network Construction
Internet Protocol Traffic
Mobile Backhaul

Optical Components: Market Shares, Strategies, and Forecasts, Worldwide, 2013 to 2019

 

WinterGreen Research announces that it has published a new study Optical Components: Market Shares, Strategy, and Forecasts, Worldwide, 2013 to 2019. The 2013 study has 567 pages, 231 tables and figures. Worldwide optical transceiver markets are poised to achieve significant growth as the data in networks expands exponentially. As cloud systems proliferate and wireless data takes hold the efficiencies brought by high speed end-to-end optical networks are needed by carriers and in the data center.

According to Susan Eustis, lead author of the study, "Optical Components are used to update the communications networks to manage broadband, to update the data center networks to make them manage traffic with higher speeds, to implement the backbone network for mobile communications.

"Everything is going mobile. This evolution is driven by mobile smart phones and tablets that provide universal connectivity. With 6 million cell phones in use and one million smart phones, soon to be 6 million smart phones, a lot of people have access to mobile communication. Video, cloud-based services, the internet, and machine-to-machine (M2M) provide mobile connectivity. All these devices are networked and drive significant traffic to the broadband network, stimulating the need for optical transceivers."

The optical component market is intensely competitive. There is increasing demand for optical components as communications markets grow in response to more use of smart phones and more Internet transmission of data. The market for network infrastructure equipment and for communications semiconductors offers attractive long-term growth:

Data center growth is in response in part to the growth of bid data, and in part to the incredible bandwidth being consumed by video content. New programming is moving to broadcast quality short videos that can be downloaded by users Users can download broadcast quality news or training videos as broadband networks become universally available.

Low bandwidth video does not directly drive adoption of optical components. It indirectly does by creating demand for broadband data transport. Video capability at the high end of the market is creating need for network high speed of transmission just because of the quantity of data being transmitted.

The Optical Transport Network (OTN) is a set of optical network elements connected by optical fiber links. Optical network elements provide transport, multiplexing, switching, management, supervision and survivability of communication channels. Carrier Ethernet is emerging. Optical transceiver, transmitter, receiver, and transponders support the implementation of the new network capacity.

Optical components are an innovation engine for the network supporting end to end data transport over optical systems. Optical components support and enable low-cost transport throughout the network. Optical components are needed for high speed network infrastructure build-outs. These are both for carriers and data centers. Network infrastructure build-out depends on the availability of consultants who are knowledgeable.

Optical transceivers are evolving that are compliant with the 10Gbps Small Form Factor Pluggable (XFP) Multi-Source Agreement (MSA) specification for next generation optical transceiver devices. The 10Gbps optical transceiver can be used in telecom and datacom (SONET/SDH/DWDM/Gigabit Ethernet) applications to change an electrical signal into an optical signal and vice versa.

There is expected to be tremendous investment in wireless cell tower base stations as the quantity of network traffic grows exponentially. Carriers worldwide are responding to the challenges brought by the massive increase in wireless data traffic. The advent of big data and exponential growth of data managed by the enterprise data centers is a significant market factor.

The global optical component market at $3.6 billion in 2012 is anticipated to reach $12.3 billion by 2019. Growth is driven by the availability of high speed processors and component devices that support increased speed and traffic on the optical networks. The migration to all optical networks is ongoing.

Markets are driven by the availability of 100 Gbps devices and the vast increases in Internet traffic. Internet traffic growth comes from a variety of sources, not the least of which 1.6 billion new smart phones sold per year. Smartphone market growth is causing the need for investment in backhaul and cell tower technology.

Worldwide optical transport market revenues are forecast to grow rapidly through 2019. This is in the context of a world communications infrastructure that is changing. Technology is enabling interaction, innovation, and sharing of knowledge in new ways.

Companies Profiled

Market Leaders
Finisar
Furukawa Electric
JDS Uniphase
Oplink
Sumitomo
Avago Technologies
NEC
Oclaro / Opnext
Source Photonics
Emcore
Market Participants
Advanced Photonix
ACON
Accelink
Agilent Technologies
Analog Devices
Broadcom
Emcore
Foxconn
GigOptix
Huawei
Ikanos
Luxtera
MRV
Menara Networks
NeoPhotonix
Reflex Photonics
Rohm Semiconductor
Santec
Transmode
Triquint
Vitesse
Zhone Technologies


Report Methodology

This is the 539th report in a series of market research reports that provide forecasts in communications, telecommunications, the internet, computer, software, and telephone equipment. The project leaders take direct responsibility for writing and preparing each report. They have significant experience preparing industry studies. Forecasts are based on primary research and proprietary data bases. Forecasts reflect analysis of the market trends in the segment and related segments. Unit and dollar shipments are analyzed through consideration of dollar volume of each market participation in the segment. Market share analysis includes conversations with key customers of products, industry segment leaders, marketing directors, distributors, leading market participants, and companies seeking to develop measurable market share. Over 200 in-depth interviews are conducted for each report with a broad range of key participants and opinion leaders in the market segment.

About the Company

WinterGreen Research, founded in 1985, provides strategic market assessments in telecommunications, communications equipment, health care, and advanced computer technology. Industry reports focus on opportunities that will expand existing markets or develop major new markets. The reports assess new product and service positioning strategies, new and evolving technologies, and technological impact on products, services, and markets. Market shares are provided. Leading market participants are profiled, and their marketing strategies, acquisitions, and strategic alliances are discussed. The principals of WinterGreen Research have been involved in analysis and forecasting of international business opportunities in telecommunications and advanced computer technology markets for over 30 years.

About the Principal Authors

Ellen T. Curtiss, Technical Director, co-founder of WinterGreen Research, conducts strategic and market assessments in technology-based industries. Previously she was a member of the staff of Arthur D. Little, Inc., for 23 years, most recently as Vice President of Arthur D. Little Decision Resources, specializing in strategic planning and market development services. She is a graduate of Boston University and the Program for Management Development at Harvard Graduate School of Business Administration. She is the author of recent studies on worldwide telecommunications markets and the Top Ten Telecommunications market analysis and forecasts.

Susan Eustis, President, co-founder of WinterGreen Research, has done research in communications and computer markets and applications. She holds several patents in microcomputing and parallel processing. She is the author of recent studies of the Service Oriented Architecture (SOA) marketing strategies, Internet software, a study of Push to Talk Equipment, Worldwide Telecommunications Equipment, Top Ten Telecommunications, Digital Loop Carrier, Web Hosting, Business Process Management, Servers, Blades, the Mainframe as a Green Machine, and Application Server markets. Ms. Eustis is a graduate of Barnard College.

2013 WinterGreen Research, Inc. All Rights Reserved.