Worldwide Nanotechnology Mid IR Sensor Market Shares, Strategies, and Forecasts, 2009 to 2015

Mid IR Sensor Markets Set to Grow Rapidly

Picture by Susie Eustis

Mountains of Opportunity

WinterGreen Research, Inc.
Lexington, Massachusetts

www.wintergreenresearch.com

REPORT # SH24081713 533 PAGES 186 TABLES AND FIGURES 2009

$3,400 SINGLE COPY $6,800 WEB SITE POSTING
CHECK OUT THESE KEY TOPICS

Mid IR Sensors
Mid-Infrared Fiber Optic Sensor
Interband Cascade (IC) Lasers
Carbon Dioxide Sensors
Comfort Sensors
Control Sensors
Energy Sensors
Respiratory Sensors
Laser Absorption Spectroscopy
Trace Gas Monitoring
Cavity Ring-Down
Mid IR Exhaled Breath Sensors

Mid IR Weapons Sensors
Mid IR Sensors Explosives Detection
Mid IR Sensors Bomb Disposal
Mid IR Sensors Increase Resolution

Semiconductor lasers
Mid-infrared lasers
Interband cascade lasers –
Quantum wells –
Type-II active regions
Carbon dioxide
Building comfort sensors
Building control sensor
Energy control sensor

Building ventilation sensor
Organically modified sol-gels
In situ chemical sensor
Silver halide fibers
Nitrobenzene
Parathion

OPPORTUNITY ABOUNDS
WinterGreen Research, Inc.
Lexington, Massachusetts
www.wintergreenresearch.com
LEXINGTON, Massachusetts (July 16, 2009) – WinterGreen Research announces that it has a new study on Worldwide nanotechnology mid IR sensor markets. Mid IR sensors are poised to achieve significant growth as sensors become less expensive to manufacture and are smaller and portable. The ability to measure chemicals and light sources as heat is anticipated to drive market growth at a rapid pace. The study is titled Worldwide Mid IR Sensor Market Shares, Market Strategies, and Market Forecasts, 2009-2015.

Force protection addresses asymmetric threats worldwide. Military mid IR sensors are used to watch over forces worldwide. Mid IR sensors are used in long range systems, base and perimeter security imaging, vehicle vision and man-portable sensors.

Homeland security, military communications, infrared countermeasures, chemical warfare agent detection, explosives detection, medical diagnostics, industrial process controls, remote gas leak detection, pollution monitoring, and real-time combustion controls are uses for the mid IR sensors.

Mid-infrared (IR) laser sensors are able to measure change in device condition, chemistry, or temperature. The ability to measure change remotely, at an affordable price, has never been possible before. The coincident elaboration of the Internet availability on wireless devices and worldwide is creating demand for remote connectivity to sensing devices.

Infrared is a portion of the electro-magnetic spectrum that is not visible by the human eye because its wavelength is too long. Unlike visible light, infrared radiation (or heat) is emitted directly by all objects above absolute zero in temperature. The mid IR spectrum goes from 3-12 m.

The military is the only significant user of commercial mid IR sensors in 2009. The military uses mid IR sensor devices to predict whether there is enemy fire aimed at and coming toward a particular target. Firing of a rocket emits heat that is immediately detectable, long before the firing is visible via light. The mid IR sensor is able to provide early warning of a rocket or missile firing, detecting the initial flash from a large distance or underwater.
Target Acquisition Minefield Detection System (ASTAMIDS) is the latest weapon in the fight against improvised explosive devices (IED). It will provide a Unit of Action (UA) asset that can be used in Tactical Operations in day or night to detect and locate surface obstacles and recently buried minefields. ASTAMIDS is currently being tested in the MQ-8B Fire Scout unmanned aerial vehicle.

Turnkey mid-infrared laser sensor systems are based on technology that goes from 3-12 m. Others have a more narrow definition of this market. This 3 to 12 m definition is used because it captures the shift from bench type laser sensor systems to portable units that emit digital signals from remote locations. New systems open a broad opportunity for sensors based on core semiconductor Quantum Cascade and Interband Cascade laser technology. Laser systems are available in both multimode and single mode DFB versions.

Applications include process monitoring, chemical sensing, medical diagnostics and infrared counter measures. The initial markets are for military use of detection of enemy fire from a distance and night vision sensors. Commercial markets are evolving. Improved sensor detection and lower prices are meaning that commercial markets are opening up.

Markets for mid IR sensors at $70.2 million in 2008 are anticipated to reach $2.5 billion by 2015, growing in response to demand for remote devices that are network configurable and accessible. Lithium-ion batteries used in cell phones and PCs, are used in mid IR remote devices, giving them a long life and effectiveness that supplements manpower.

Mid IR Sensor Companies Profiled

Mid IR Sensor Market Leaders

FLIR Systems
Hamamatsu
Li-Cor
M Squared Lasers Ltd
Maxion
Power Technology
Cascade Technologies
SenseAir
Sofrdir
Structured Materials Industries
Daylight Solutions
Mid IR Sensor Market Participants

Mid IR Sensor Company Profiles
AdTech Optics
Agiltron
Akers Biosciences
Consensus Business Group
Direct Vapor Technologies
Infrared Fiber Systems IFS
JonDeTech AB
Infrared Semiconductor Lasers
Mirthe
Nanophase Technologies (Nasdaq: NANX)
NovaWave Technologies
Opto Solutions
Power Technology Distributor of Sanyo Laser Diode Products
Sanyo
Texas Instruments
Tyco
Vaisala
VIASPACE
Viaspace Subsidiary Direct Methanol Fuel Cell Corporation (DMFCC)
Viaspace Subsidiary — Ionfinity LLC

REPORT METHODOLOGY

THIS IS THE 408RD REPORT IN A SERIES OF MARKET RESEARCH REPORTS THAT PROVIDE FORECASTS IN COMMUNICATIONS, TELECOMMUNICATIONS, THE INTERNET, COMPUTER, SOFTWARE, TELEPHONE EQUIPMENT, HEALTH EQUIPMENT, AND ENERGY. THE PROJECT LEADERS TAKE DIRECT RESPONSIBILITY FOR WRITING AND PREPARING EACH REPORT. THEY HAVE SIGNIFICANT EXPERIENCE PREPARING INDUSTRY STUDIES. FORECASTS ARE BASED ON PRIMARY RESEARCH AND PROPRIETARY DATA BASES. FORECASTS REFLECT ANALYSIS OF THE MARKET TRENDS IN THE SEGMENT AND EACH MARKET PARTICIPANT IN THE Segment. INSTALLED BASE ANALYSIS AND UNIT ANALYSIS IS BASED ON INTERVIEWS AND AN INFORMATION SEARCH. MARKET SHARE ANALYSIS INCLUDES CONVERSATIONS WITH KEY CUSTOMERS OF PRODUCTS, INDUSTRY SEGMENT LEADERS, MARKETING DIRECTORS, DISTRIBUTORS, LEADING MARKET PARTICIPANTS, Opinion LEADERS, AND COMPANIES SEEKING TO DEVELOP MEASURABLE MARKET SHARE. OVER 200 IN DEPTH INTERVIEWS ARE CONDUCTED FOR EACH REPORT WITH A BROAD RANGE OF KEY PARTICIPANTS AND INDUSTRY LEADERS IN THE MARKET SEGMENT. WE ESTABLISH ACCURATE MARKET FORECASTS BASED ON ECONOMIC AND MARKET CONDITIONS AS A BASE. USE INPUT/OUTPUT RATIOS, FLOW CHARTS, AND OTHER ECONOMIC METHODS TO QUANTIFY DATA. USE IN-HOUSE ANALYSTS WHO MEET STRINGENT QUALITY STANDARDS. INTERVIEWING KEY INDUSTRY PARTICIPANTS, EXPERTS AND END-USERS IS A CENTRAL PART OF THE STUDY. OUR RESEARCH INCLUDES ACCESS TO LARGE PROPRIETARY DATABASES. LITERATURE SEARCH INCLUDES ANALYSIS OF TRADE PUBLICATIONS, GOVERNMENT REPORTS, AND CORPORATE LITERATURE.

FINDINGS AND CONCLUSIONS OF THIS REPORT ARE BASED ON INFORMATION GATHERED FROM INDUSTRY SOURCES, INCLUDING MANUFACTURERS, DISTRIBUTORS, PARTNERS, Opinion LEADERS, AND USERS. INTERVIEW DATA WAS COMBINED WITH INFORMATION GATHERED THROUGH AN EXTENSIVE REVIEW OF INTERNET AND PRINTED SOURCES SUCH AS TRADE PUBLICATIONS, TRADE ASSOCIATIONS, COMPANY LITERATURE, AND ONLINE DATABASES. THE PROJECTIONS CONTAINED IN THIS REPORT ARE CHECKED FROM TOP DOWN AND BOTTOM UP ANALYSIS TO BE SURE THERE IS CONGRUENCE FROM THAT PERSPECTIVE.

THE BASE YEAR FOR ANALYSIS AND PROJECTION IS 2008. WITH 2008 AND SEVERAL YEARS PRIOR TO THAT AS A BASELINE, MARKET PROJECTIONS WERE DEVELOPED FOR 2009 THROUGH 2015. THESE PROJECTIONS ARE BASED ON A COMBINATION OF A CONSENSUS AMONG THE PRIMARY CONTACTS COMBINED WITH UNDERSTANDING OF THE KEY MARKET DRIVERS AND THEIR IMPACT FROM A HISTORICAL AND ANALYTICAL PERSPECTIVE. THE ANALYTICAL METHODOLOGIES USED TO GENERATE THE MARKET ESTIMATES ARE BASED ON PENETRATION ANALYSES, SIMILAR MARKET ANALYSES, AND DELTA CALCULATIONS TO SUPPLEMENT INDEPENDENT AND DEPENDENT VARIABLE ANALYSIS.

YOU MUST HAVE THIS STUDY

REPORT # SH24081713 533 PAGES 186 TABLES AND FIGURES 2009
$3,400 SINGLE COPY $6,800 WEB SITE POSTING
Table of Contents

MID IR SENSOR EXECUTIVE SUMMARY
- Mid-Infrared (IR) Laser Sensor Systems
- Mid IR Sensor Market Driving Forces
- Mid IR Sensor Market Shares
- Mid IR Sensor Market Forecasts

MID IR SENSOR MARKET DESCRIPTION AND MARKET DYNAMICS

1. MID IR SENSOR MARKET DESCRIPTION AND MARKET DYNAMICS

1.1 Mid IR Sensors Positioned To Provide Wavelength Tunability And High Optical Power
- ECqL Expressed As A QC Semiconductor Chip
- Advances And Applications Of Mid-Infrared Based Trace Gas Sensor Technology

1.2 Semiconductor Diode Lasers Operating At Midwave-Infrared (Mid-IR) Wavelengths
- Interband Cascade Laser (ICL) Based Spectroscopic Trace-Gas Sensor Provides For Simultaneous Detection Of Two Atmospheric Trace Gases

1.3 Infrared Semiconductor Lasers

1.4 Applications Level Mid IR Sensor Applications And Test Beds

1.5 Smart Sensors Replace Expensive Building Control Systems
- Building Control Standardization

1.6 Biomedical And Chemical Mid-IR Spr Based Sensor
- Development Of Mid-Infrared Surface Plasmon
- Sensors Utilizing Surface Plasmon Resonance (SPR)

1.7 Miniaturized Mid-Infrared Sensor Technologies Trends
- Mid IR Waveguides
- Miniaturized IR Gas Sensors

1.8 Emerging New Fields of Mid IR Sensor Application And Outlook

1.9 Sol-Gel-Coated Mid-Infrared Fiber-Optic Sensors

1.10 Biofunctionalized Magnetic Nanoparticle Integrated Mid-Infrared Pathogen Sensor for Food Matrixes
2. MID IR SENSORS MARKET SHARES AND MARKET FORECASTS

2.1 Mid-Infrared (IR) Laser Sensor Systems
2.1.1 Mid IR Sensor Market Driving Forces
2.2 Mid IR Sensor Market Shares
2.2.1 FLIR Systems Multi-Sensor Mission Equipment
2.2.2 FLIR Mid IR Sensors
2.2.3 Sofradir
2.2.4 SenseAir is Testing Carbon Dioxide Sensors
2.2.5 Senseair Test & Measurement Carbon Dioxide Sensors
2.2.6 SenseAir(Non-dispersive Infra-Red) technology
2.2.7 JonDeTech
2.2.8 Structured Materials Industries
2.2.9 Maxion Technologies
2.2.10 NovaWave
2.2.11 Power Technology Quantum-Cascade Mid IR Lasers
2.2.12 Daylight Solutions Broadly Tunable, Room-Temperature, Mid-IR Laser
2.2.13 Infrared Fiber Systems Infrared Transmitting Fibers Medical Market
2.2.14 M Squared Next-Generation Bio-Medical Lasers Firefly-IR
2.3 Mid IR Sensor Market Forecasts
2.3.1 Military Mid IR Sensor Market Forecasts
2.3.2 Homeland Security Mid IR Sensor Market Forecasts
2.3.3 Law Enforcement Mid IR Sensor Market Forecasts
2.3.4 Mid IR sensors Smart Grid and Smart Building Market Forecasts
2.3.5 Smart Electrical Grid Moves to Electronics and Sensors from Purely Mechanical Infrastructure
2.3.6 Carbon Dioxide Gas Sensing
2.3.7 Smart Grid Networking
2.3.8 Healthcare Mid IR Sensor Breath Analysis Market Forecasts
2.3.9 Mid Infrared IR Sensor Technologies Basis For IR Sensing
2.3.10 Nanoparticles The Base For Mid IR Sensor Evolution
2.3.11 Miniaturization Significant For The Development Of Mid IR Applications
2.4 Mid IR Sensor Market Opportunity Overview
2.4.1 Molecular Responses Across the MIR Spectrum
2.4.2 Technology Options Available in MIR
2.4.3 Diagrams To Illustrate The Technologies
2.4.4 Comparison of Technology Options
2.4.5 What are the current, real products, in which MIR sensors are actually deployed?
2.4.6 Market Trends & Key Companies
2.4.7 Key Applications/Products Used By The Military
2.4.8 Potential Technologies and Applications of MIR Sensors
2.4.9 Key Developments Are Required To Make The Potential Applications Into Real Markets
2.4.10 Estimates Of Potential Market Sizes, Likely Time To Fruition
2.4.11 Characteristics Required
2.4.12 Building a Robust Data Sensor Network Integration Layer
2.5 Link Between SOA and MIR sensors
2.5.1 SOA Used to Connect Mid IR Sensor Information to Analytical Software
2.5.2 Building a Robust Data Sensor Network Integration Layer
2.5.3 SOA Network Sensor Market Segment
2.5.4 Mid IR Sensor Enabled Device Market Driving Forces
2.5.5 SOA Market Shares
2.6 Mid IR Sensor Prices
2.7 Mid IR Sensor Regional Shipments
3. MIDIR SENSOR PRODUCT DESCRIPTION

3.1 Power Technology Quantum-Cascade Lasers 3-1
 3.1.1 Power Technology Quantum-Cascade Lasers Blue, Violet, & UV Diode Lasers 3-4
 3.1.2 Power Technology Infrared Viewing Devices 3-7
 3.1.3 Power Technology Laser Modules for OEM 3-12

3.2 Daylight Solutions Lasers For Gas Sensing Instrumentation 3-15
 3.2.1 Daylight Solutions Mid-IR HgCdTe Detectors 3-16
 3.2.2 Daylight Solutions Tunable Laser 3-16
 3.2.3 Daylight Solutions Broadly Tunable, Room-Temperature, Mid-IR Laser 3-21
 3.2.4 Daylight Solutions Mid-IR 3-25
 3.2.5 Daylight Solutions Fixed Wavelength Pulsed and CW Mid-Infrared Lasers 3-31
 3.2.6 Daylight Solutions Mid-IR HgCdTe Detectors 3-34
 3.2.7 Daylight Solutions Room-Temperature, Low-Noise Amplified MCT Detector Core Technology 3-36
 3.2.8 Daylight Solutions Digital Object Identifier 3-39
 3.2.9 Power Technology Applications 3-40
 3.2.10 Daylight Solutions Power Technology Sensors Integrated With Wireless Capability 3-42
 3.2.11 Daylight Solutions Power Technology EQCCL Used For Illumination Applications 3-43

3.3 Cascade Technologies 3-43
 3.3.1 Cascade Technologies Mid Infrared Countermeasures 3-55

3.4 IBM Event Driven Sensor Initiatives 3-59
 3.4.1 IBM Smart Grid Asset Management and Security 3-60
 3.4.2 Value of IBM WebSphereMQ, DataPower, and WebSphereMQ Broker to SOA 3-62
 3.4.3 IBM SOA Model 3-64
 3.4.4 SOA Components Use IBM WebSphereMQ 3-66
 3.4.5 IBM WebSphere Application Server Leverages Java Technology as a Stack 3-66
 3.4.6 IBM SOA Fabric Across The Enterprise To Reuse IT Assets 3-67
 3.4.7 IBM Renewable Energy Systems 3-67

3.5 Daintree Networks Sensor Network Analyzer 3-70
3.6 Bosch 3-70
 3.6.1 Building Automation 3-70
 3.6.2 Carbon Dioxide Ventilation IR Sensors 3-71
 3.6.3 Motion Detectors 3-72
 3.6.4 Smart Sensors Simplify 3-72

3.7 Senseair Carbon Dioxide 3-76
 3.7.1 Senseair Test & Measurement Carbon Dioxide Sensors 3-77
 3.7.2 Senseair Temperature Proportional To Carbon Dioxide Level 3-78
 3.7.3 SenseAir Collaborates With Ventilation Systems Suppliers 3-80
 3.7.4 SenseAir Measurement Platform Has Intelligence 3-81
 3.7.5 SenseAir is Testing Carbon Dioxide Sensors 3-82
3.7.6 Sensor Switch Occupancy Sensor Products 3-83
3.7.7 Sensor Switch Technology Engineering Driven Company 3-87
3.7.8 Sensor Switch Passive Infrared 3-88
3.8 Johnson Controls Sensor Products 3-88
3.8.1 Johnson Controls Valve Products 3-90
3.9 JonDeTech Surface Mount Plastic Thermopiles 3-91
3.9.1 JonDeTech Thermopiles 3-92
3.9.2 JonDeTech Horizontal Thermocouple 3-93
3.9.3 JonDeTech Advantage Of Nanotechnology Vertical Thermocouple 3-94
3.10 Agiltron 3-97
3.10.1 Agiltron Infrared Detector Products 3-101
3.10.2 Agiltron Lead Sulfide Infrared Detector Array 3-106
3.10.3 Agiltron Lead Selenide Infrared Detectors 3-106
3.10.4 Agiltron Lead Selenide Infrared (Pbse) Detector Array 3-106
3.11 Mirthe Mid IR Sensor Breath Analyzers 3-107
3.11.1 Mirthe Engineered Systems for Mid-IR Laser Absorption Spectroscopy 3-107
3.11.2 Mirthe Strategic 3-Level Framework 3-112
3.12 Maxion Technologies Infrared Semiconductor Lasers 3-114
3.12.1 Maxion Technologies Turn-Key Mid-IR Laser Systems 3-114
3.12.2 Maxion Technologies Turn-Key Mid-IR - Laser Quantum Cascade (QC) and Interband Cascade (IC) Sensors 3-115
3.12.3 Maxion Distributed Feedback (DFB) Single-Mode and Fabry-Perot (FP) Multi-Mode Lasers 3-117
3.12.4 Maxion C-Mount and NS-Mount Lasers 3-119
3.13 Structured Materials Industries 3-121
3.14 M Squared Next-Generation Bio-Medical Lasers 3-122
3.14.1 M Squared Lasers Firefly-IR 3-124
3.14.2 M Squared Lasers Firefly-THz 3-127
3.14.4 M Squared Lasers Product Families 3-130
3.14.5 M Squared ICE-BLOC® Photonic Controllers 3-130
3.14.6 M Squared Laser Systems 3-130
3.14.7 M Squared Dependable Innovation 3-131
3.15 Viaspace Energy Products/Technologies 3-132
3.15.1 VIASPACE / Ionfinity 3-133
3.16 NovaWave 3-133
3.16.1 NASA Applications For Compact UV Laser-Based Sensor Instrument 3-134
3.16.2 Novawave Technology Mid-Infrared Laser Source Real-time, Multiplex Greenhouse Gas Sensor 3-135
3.16.3 Novawave Technology Canary in a Beam Line 3-136
3.16.4 Novawave Technology Quasi-Phase-Matched DFG Lasers for Sensing 3-136
3.17 GE Sensors 3-140
3.17.1 GE Wireless Sensor Networks 3-140
3.17.2 GE Applications for Wireless Sensor Networks 3-142
3.18 PNNL Electronics and Systems Integration 3-143
3.19 FLIR Mid IR Sensors 3-146
3.19.1 FLIR Government Systems Airborne MEP 3-150
3.19.2 FLIR Government Systems Unmanned – Star SAFIRE QWIP 3-150
3.19.3 FLIR Government Systems Unmanned
TacFLIR II 3-151
3.19.4 FLIR Government Systems - Products –
Maritime - SeaFLIR II 3-151
3.19.5 FLIR Government Systems - Products –
Land - TacFLIR II 3-151
3.19.6 FLIR Government Systems - Products –
Airborne - SeaFLIR II 3-152
3.19.7 FLIR Government Systems - Products –
Land - RWSS 3-152
3.19.8 FLIR Government Systems Force Protection 3-152
3.19.9 FLIR Government Systems - Products - Airborne - Talon 3-153
3.19.10 FLIR Government Systems Unmanned - Star SAFIRE III 3-153
3.19.11 FLIR Government Systems Airborne - Talon 3-153
3.19.12 FLIR Government Systems –
Products - Maritime - Star SAFIRE III 3-154
Products - Land - WideEye II 3-154
3.19.14 FLIR EO/IR 3-154
3.20 Hamamatsu 3-156
3.20.1 Hamamatsu Laser 3-156
3.21 Alpes 3-158
3.22 Adtech Optics 3-160
3.23 Sofradir 3-160
3.24 Opto Solutions - IR Photonics 3-166

MID IR SENSOR TECHNOLOGY

4. MID IR SENSOR TECHNOLOGY 4-1
4.1 Nanoparticle Dispersions 4-1
 4.1.1 Aqueous Dispersions 4-1
 4.1.2 JonDeTechs Thermopiles Based On Nanotechnology 4-2
 4.1.3 Nanotechnology Particle Size In The Range
 Of 1-100 Nanometers 4-4
4.1.4 Nanoparticles 4-4
4.1.5 Silicon In A Battery Swells As It Absorbs Lithium Atoms 4-6
4.1.6 Different Shapes Of The Same Material
 Create Different Characteristics 4-7
4.1.7 Optical Properties Integrated Into New
 Mid IR Sensor Technology 4-8
4.2 IBM Microscope 100 Million Times Finer
 Resolution Than Current MRI 4-9
 4.2.1 IBM Research 4-11
 4.2.2 Technological Trends in Microscopy 4-12
4.3 Battery Technology for Mid IR Sensors 4-14
 4.3.1 Battery Chemistries Technology 4-15
4.4 Breath Analyzers Detect Disease 4-18
4.5 Improving Biomaterials For Medical Implant Applications 4-19
 4.5.1 Bioactive Materials 4-21
 4.5.2 Forming A Chemical Bond With Bone 4-21
 4.5.3 Bioactivity Increased Through Surface Modification 4-22
 4.5.4 Biofilms Multilayered Colonies Of Bacteria 4-23
 4.5.5 Biofilm Formation 4-23
 4.5.6 Biofilms As A Major Contributor To Chronic Wounds 4-25
 4.5.7 Acute or Chronic Infection in Some Biomaterial Applications 4-26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.8</td>
<td>Biomaterials Research</td>
<td>4-29</td>
</tr>
<tr>
<td>4.6</td>
<td>QC Technology</td>
<td>4-29</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Components of an ECqcL</td>
<td>4-31</td>
</tr>
<tr>
<td>4.7</td>
<td>Schematic of mid-infrared trace gas sensor</td>
<td>4-32</td>
</tr>
<tr>
<td>4.8</td>
<td>Mid-IR Sensors Standards</td>
<td>4-37</td>
</tr>
<tr>
<td>4.9</td>
<td>Driving Forces For Building Automation</td>
<td>4-38</td>
</tr>
<tr>
<td>4.10</td>
<td>Near IR Night Vision Sensors</td>
<td>4-40</td>
</tr>
<tr>
<td>4.10.1</td>
<td>Sensor Based Threat detection</td>
<td>4-41</td>
</tr>
<tr>
<td>4.11</td>
<td>Mid-IR Non-Invasive Medical Systems</td>
<td>4-44</td>
</tr>
<tr>
<td>4.12</td>
<td>University of Oklahoma High-Tech Breath Test</td>
<td>4-45</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Nanotechnology Improves Laser Performance</td>
<td>4-47</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Nanotechnology Breath Analyzer For Kidney Failure</td>
<td>4-48</td>
</tr>
<tr>
<td>4.13</td>
<td>Physical Vapor Nanoparticle Synthesis</td>
<td>4-49</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Nanophase Vapor Development Process</td>
<td>4-51</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Nanoparticle Coatings - Discrete Particle Encapsulation</td>
<td>4-52</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Nanoparticle Vapor Organic Dispersions</td>
<td>4-54</td>
</tr>
<tr>
<td>5.1</td>
<td>AdTech Optics</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.1</td>
<td>AdTech Products</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Agiltron</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Agiltron Acquires SensArray Infrared</td>
<td>5-4</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Agiltron Acquires Multispectral Imaging</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Agiltron Technology</td>
<td>5-5</td>
</tr>
<tr>
<td>5.3</td>
<td>Akers Biosciences</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Akers Biosciences Revenue</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Akers Biosciences Products</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Akers Biosciences Biosniffer Electronic Detector</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4</td>
<td>Alpes5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Alpes Lasers Fields Of Applications</td>
<td>5-11</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Alpes Mid IR Detection Techniques</td>
<td>5-13</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Alpes Customers</td>
<td>5-15</td>
</tr>
<tr>
<td>5.5</td>
<td>Cascade Technologies</td>
<td>5-15</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Cascade Technologies Emission Monitoring</td>
<td>5-16</td>
</tr>
<tr>
<td>5.6</td>
<td>Consensus Business Group</td>
<td>5-17</td>
</tr>
<tr>
<td>5.7</td>
<td>Daylight Solutions</td>
<td>5-18</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Daylight Solutions Signs $5.3M Contract With U.S. Navy</td>
<td>5-19</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Daylight Solutions $7.5 Million in Series 'A' Financing</td>
<td>5-19</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Daylight Solutions Closes $5,000,000 Series B Financing.</td>
<td>5-19</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Daylight Solutions Wins Defense Advanced Research Projects Agency (DARPA)...</td>
<td>5-20</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Daylight Solutions Commercializes High Resolution, Broadly-Tunable Mid-IR Laser System for Environmental and Industrial Monitoring Research</td>
<td>5-21</td>
</tr>
<tr>
<td>5.8</td>
<td>Direct Vapor Technologies</td>
<td>23</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Directed Vapor Technologies Physical Vapor Deposition (PVD) Approaches</td>
<td>5-24</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Directed Vapor Deposition (DVD)</td>
<td>5-24</td>
</tr>
</tbody>
</table>
Physical Vapor Deposition (PVD) 5-24
5.8.3 Directed Vapor Coating Technologies Applications 5-27
5.8.4 Direct Vapor Technology Customers 5-29
5.9 FLIR Systems 5-30
5.9.1 FLIR Infrared Technology 5-40
5.9.2 FLIR Manufacturing Process Control 5-42
5.9.3 FLIR Building Inspection 5-42
5.9.4 FLIR Gas Detection 5-42
5.9.5 FLIR Emerging Thermography 5-43
5.9.6 FLIR Systems First Quarter 2009 Revenue 5-43
5.9.7 FLIR Systems 5-45
5.9.8 FLIR Systems $11.4 Million Naval Surface Warfare Center 5-47
5.10 Hamamatsu 5-47
5.10.1 Hamamatsu Photonics Strategic Positioning 5-48
5.10.2 Hamamatsu Photonics Revenue 5-50
5.11 Infrared Fiber Systems IFS 5-51
5.11.1 Infrared Fiber Systems Infrared Transmitting Fibers Medical Market 5-51
5.11.2 Infrared Fiber Systems Sensor Market 5-52
5.11.3 Infrared Fiber Systems Bulk Glass 5-52
5.11.4 Infrared Fiber Systems Infrared Spectrometer and Plastics Identifier 5-52
5.11.5 Infrared Fiber Systems Government Grants 5-53
5.11.6 Infrared Fiber Systems Facilities 5-53
5.11.7 Infrared Fiber Systems Strategic Positioning 5-54
5.11.8 Infrared Fiber Systems HP Fiber 5-55
5.12 JonDeTech AB 5-59
5.13 Li-Cor 5-60
5.13.1 Li-Cor IRDye Near Infrared Fluorescent Dyes 5-61
5.14 M Squared Lasers Ltd 5-62
5.14.1 M Squared Laser Technology ICE-BLOC® Photonic Controllers 5-64
5.14.2 M Squared Bio-Medical Lasers 5-65
5.15 Maxion 5-66
5.15.1 Maxion Technologies High Performance, Mid-Infrared Semiconductor Lasers 5-66
5.16 Mirthe 5-68
5.16.1 Mirthe Members 5-70
5.16.2 Engineering Research Center on Mid-InfraRed Technologies for Health and the Environment (Mirthe) 5-74
5.16.3 Mirthe Provides Students With A Broadly Interdisciplinary Education 5-75
5.16.4 Industrial Collaboration and Technology Transfer 5-77
5.17 Nanophase Technologies (Nasdaq: NANX) 5-80
5.17.1 Nanophase Technologies Customers 5-82
5.17.2 Nanophase Technologies Revenue 5-83
5.17.3 Nanophase Technologies Performance Coatings 5-84
5.17.4 Nanophase Technologies Integrated Family of Technologies 5-86
5.17.5 Nanophase Technologies Nanomaterial Innovation 5-92
5.17.6 Nanophase Technologies Customers 5-94
5.17.7 Nanophase Technologies Revenue 5-97
5.18 NovaWave Technologies 5-98
5.18.1 NovaWave Technology Mid-Infrared Laser Source Real-time, Multi-species Greenhouse Gas Sensing 5-99
5.18.2 NovaWave Technologies Core Competencies 5-102
5.18.3 Novawave Technologies International Distributors 5-103
5.18.4 NovaWave Selected for CPP Participation 5-105
5.19 Opto Solutions 5-106
5.20 Power Technology 5-106
 5.20.1 Power Technology High Power Blue and Violet Laser Diodes 5-108
 5.20.2 Power Technology Distributor of Sanyo Laser Diode Products 5-109
5.21 Sanyo 5-109
5.22 SenseAir 5-110
 5.22.1 SenseAir Profile 5-112
5.23 Sofradir 5-112
 5.23.1 Sofradir Subsidiary Ulis 5-114
 5.23.2 Sofradir Revenue 5-114
 5.23.3 Sofradir Detector Applications 5-115
5.24 Structured Materials Industries 5-118
 5.24.1 Gas Flow Hollow Cathode (GFHC0) Sputter Deposition 5-118
 5.24.2 Structured Materials Industries SMI Customer Advantage 5-122
5.25 Texas Instruments 5-122
5.26 Tyco 5-122
5.27 Vaisala 5-123
5.28 VIASPACE 5-123
 5.28.1 Viaspace Subsidiary Direct Methanol Fuel Cell Corporation (DMFCC) 5-125
 5.28.2 Viaspace Security 5-127
 5.28.3 Viaspace Product Positioning 5-128
 5.28.4 Viaspace Subsidiary — Ionfinity LLC 5-129

List of Tables and Figures

MID IR SENSOR EXECUTIVE SUMMARY

Table ES-1 Mid IR Sensor Market Driving Forces ES-3
Figure ES-2 Worldwide Mid IR Sensor Shipments ES-5
Table ES-3 JonDeTech Thermopile Sensor Characteristics ES-6
Figure ES-4 Worldwide Total Mid IR Market Forecasts, Dollars, 2008-2015 ES-8
Table ES-5 Nanophase Technologies NANOGARD® LL Zinc Oxide, USP ES-9
Figure ES-6 Nanophase Technologies NANOARC® Copper Oxide ES-10

MID IR SENSOR MARKET DESCRIPTION AND MARKET DYNAMICS

Figure 1-1 Interband-Cascade (IC) Lasers 1-9
Table 1-2
Commercialization Of Mid And Long-Wavelength (3-12 Microns) Infrared Semiconductor Lasers

Table 1-2 (Continued) 1-11
Commercialization Of Mid And Long-Wavelength (3-12 Microns) Infrared Semiconductor Lasers
Table 1-3 1-25
Applications For Mid IR Sensing
Table 1-4 1-27
Mid-Infrared Fiber-Optic Sensor characteristics

MID IR SENSOR MARKET SHARES AND MARKET FORECASTS

Table 2-1 2-3
Mid IR Sensor Market Driving Forces
Table 2-2 2-4
Technologies Impacting Mid IR Sensor Market
Table 2-2 (Continued) 2-5
Technologies Impacting Mid IR Sensor Market
Figure 2-3 2-6
Worldwide Mid IR Sensor Shipments
Market Shares, Dollars, 2008
Figure 2-4 2-7
Worldwide Mid IR Sensor Shipments
Market Shares, Dollars, 2008
Figure 2-5 2-10
Senseair NDIR (Non-dispersive Infra-Red) technology
Table 2-6 2-14
Key Features Of The JonDeTech Thermopile
Table 2-7 2-15
JonDeTech Thermopile Sensor Flexibility
Table 2-8 2-16
JonDeTech Thermopile Sensor Characteristics
Figure 2-9 2-17
Surface Mount Plastic Thermopile Layers
Figure 2-10 2-18
Surface Mount Plastic Thermopile
Figure 2-11 2-19
Surface Mount Plastic Thermopile
Table 2-12 2-22
Maxion Technologies Mid IR Sensor Laser products Revenue Base Areas
Figure 2-13 2-27
Worldwide Total Mid IR Market Forecasts, Dollars, 2008-2015
Figure 2-14 2-30
Worldwide Military Mid IR Sensor
Market Forecasts, Dollars, 2009-2015
Figure 2-15 2-35
Worldwide Homeland Security Mid IR Sensor
Market Forecasts, Dollars, 2009-2015
Table 2-16 2-37
Figure 2-17 2-41
Worldwide Smart Grid and Smart Building Mid IR Sensor Market Forecasts, Dollars, 2009-2015
Figure 2-18 2-49
Table 2-19 2-54
Power Technology Mid IR Sensor Applications
Technology Mid IR Sensor Applications
Table 2-20 2-62
Mid IR Technology Quantum-Cascade Lasers Features
Daylight Solutions' Core Technology
Senseair Carbon Dioxide Sensors
Vertical Heat Flow Model Of Jondetech Thermopiles
Jondetech Thermopile Infrared Radiation Detectors Generation Flex
Mass Spectrometry vs. Mirthe Mid IR Sensors For To Measuring Trace Gas At Ppm Or Ppb Sensitivity
Table 2-21 2-78
Table 2-22 2-84
Types of Internet Connected Devices Likely to be Using Using Mid IR Sensors That Need SOA Software To Achieve Connectivity
Table 2-23 2-89
Services oriented architecture (SOA) benefits
Table 2-24 2-90
Services Oriented Architecture SOA Market Driving Forces
Figure 2-25 2-91
Worldwide Services Oriented Architecture (SOA) Infrastructure Market Shares, 2008
Figure 2-26 2-93
Mid IR Sensor Regional Market Shares, 2008
Table 2-27 2-94
Mid IR Sensor Regional Market Shares, 2008

MID IR SENSOR PRODUCT DESCRIPTION

Table 3-1 3-2
Power Technology Available Wavelengths & Output Powers
Table 3-2 3-3
Power Technology Quantum-Cascade Lasers Features
Table 3-3 3-4
Power Technology Quantum-Cascade Lasers Mechanical dimensions
Figure 3-4 3-5
Power Technology Temperature Controlled Laser Diode Modules
Table 3-5 3-6
Power Technology Mid IR Sensor Applications
Table 3-27 3-33
Daylight Solutions Fixed-Wavelength Mid-IR External-Cavity Lasers Applications
Figure 3-28 3-34
Daylight Solutions Mid-IR HgCdTe Detectors Table 3-29 3-35
Daylight Solutions Mid-IR HgCdTe Detectors Key Features Table 3-30 3-36
Daylight Solutions Core Technology Figure 3-31 3-37
Daylight Solutions' Core Technology Table 3-32 3-41
Daylight Solutions Power Technology Mid IR Sensor Applications Table 3-32 (Continued) 3-42
Daylight Solutions Power Technology Mid IR Sensor Applications Table 3-33 3-44
Cascade Technologies Provides Mid IR Quantum Cascade Lasers QCL Features & Benefits Table 3-34 3-45
Cascade Technologies Provides Mid IR Quantum Cascade Lasers QCL Typical Applications Table 3-35 3-46
Cascade Technologies Mid IR Sensor Features & Benefits Table 3-36 3-47
Cascade Technologies Mid IR Sensor Marine Emission monitoring Table 3-37 3-48
Cascade Technologies Mid IR Sensor Wavelengths And Associated Measurable Gases With Strong Absorption Bands In These Regions Table 3-38 3-49
Cascade Technologies Mid IR Sensor Wavelengths Features Table 3-39 3-50
Cascade Technologies Mid IR Sensor Wavelength Operating Parameters: Table 3-40 3-51
Cascade Technologies Mid IR Sensor Applications Features & Benefits Table 3-40 (Continued) 3-52
Cascade Technologies Mid IR Sensor Applications Features & Benefits Table 3-41 3-53
Cascade Mid IR Sensor Trace Gas Analyzer Features & Benefits Table 3-42 3-54
Cascade’s instrumentation Biochemical Fermentation Application Functions Table 3-43 3-56
Cascade Technologies Mid Infrared Countermeasures Features: Table 3-44 3-57
Cascade Technologies Mid Infrared IRCM – ICM100 – Assesment Unit
Table 3-45
Cascade Mid Infrared countermeasures ICM200 Functions
Figure 3-46
IBM Asset End to End Remote Sensor Management Positioning
Table 3-47
IBM Sensor Network Business Solutions
Table 3-48
Building Automation Sensors
Table 3-49
Building Automation Sensor Management Architecture
Figure 3-50
Senseair Carbon Dioxide Sensors
Figure 3-51
SenseAir Carbon Dioxide Sensor
Figure 3-52
SenseAir Circuit Board
Table 3-53
Sensor Switch Product Highlights
Figure 3-54
Sensor Switch Smart Buildings
Table 3-55
Sensor Switch Lighting Controls Technical Services
Table 3-56
Sensor Switch Engineering Advances
Figure 3-57
Johnson Controls Sensor Products
Table 3-58
Johnson Controls Sensor Types
Table 3-59
Johnson Controls Valve Categories:
Table 3-60
JonDeTech Thermopile Applications
Figure 3-61
Vertical Heat Flow Model Of Jondetech Thermopiles
Figure 3-62
Jondetech Thermopile Infrared Radiation Tectors Generation Flex
Figure 3-63
Agiltron Room Temperature Automated Chemical Processing (ACP) Sensors
Figure 3-64
Agiltron Typical Room Temperature Electrical Characteristics Of Automated Chemical Processing (ACP)
Table 3-65
Agiltron Response of PbS Detectors
Figure 3-66
Agiltron Infrared Detector Configurations
Figure 3-67
Agiltron Lead Sulfide Infrared (PbS) Detector Array
Figure 3-68
Quartz Resonator Photoacoustic Sensing Cell
Figure 3-69
Mass Spectrometry vs. Mirthe Mid IR Sensors For To
Measuring Trace Gas At Ppm Or Ppb Sensitivity

Table 3-70 3-110
Mirthe Impact In Environment And Homeland Security:
Table 3-71 3-111
Mirthe Impact In Health:
Table 3-72 3-111
Mirthe Impact In Industrial Outreach:
Figure 3-73 3-112
Mirthe’s Strategic 3-Level Framework
Table 3-74 3-116
Maxion Technologies Infrared Semiconductor Laser Products Solutions Areas
Figure 3-75 3-118
Maxion Multimode Lasers High Heat Load Laser Package
Figure 3-76 3-119
Maxion Turnkey Laser System Single Mode Lasers
Figure 3-77 3-120
Maxion Linear Arrays Of IC and QC Lasers -- C-mount and NS-mount Lasers
Figure 3-78 3-121
Maxion LED in a Dewar
Figure 3-79 3-123
M Squared Device
Table 3-80 3-126
M Squared Firefly-IR Applications Positioning
Table 3-80 (Continued) 3-127
M Squared Firefly-IR Applications Positioning
Table 3-81 3-129
M Squared Firefly-THz features
Figure 3-82 3-138
Novawave Technology IRIS™ 1000 Tunable Laser System
Table 3-83 3-139
Novawave Technology System Features
Figure 3-84 3-141
GE Wireless Sensor Networks
Table 3-85 3-144
PNNL Electronics Products
Table 3-86 3-145
PNNL System Integration
Figure 3-87 3-147
FLIR Unmanned Laser Targeting Systems
Figure 3-88 3-149
FLIR MEP Reconnaissance, Surveillance, Target Acquisition Laser Designator Mid IR Sensor
Figure 3-89 3-157
Hamamatsu Continuous-Wave QCL For Room Temperature Operation
MID IR SENSOR TECHNOLOGY

Figure 4-1
JonDeTechs Nanotechnology Thermopiles
Figure 4-2
Nanowire Battery Can Hold 10 Times The
Charge Of Existing Lithium-Ion Battery
Table 4-3
Computerization Of Microscopic Manufacturing
Procedure Benefits
Table 4-4
Battery Chemistries At The Forefront For Mid IR Sensors
Figure 4-6
Biofilm Formation
Figure 4-7
Mid IR Spectrum Wavenumber and Absorbance
Figure 4-8
Mid-Infrared Light Novel Mid-Infrared Materials
Figure 4-9
Mid-Infrared Light Sources
Figure 4-10
Mid IR Sensor Applications & Testbeds
Figure 4-11
University of Oklahoma Researchers Are
Working On A High-Tech Breath Test
Figure 4-12
Physical Vapor Nanoparticle Synthesis Process
Figure 4-13
Nanophase Technologies Organic Dispersions In Manufacturing
Figure 4-14
Nanophase Technologies Organic Dispersions
In Polar And Non-Polar Organic Fluids
Table 5-1 5-2
AdTech Products
Table 5-1 (Continued) 5-3
AdTech Products
Table 5-2 5-7
Akers Biosciences Products
Table 5-2 (Continued) 5-8
Akers Biosciences Products
Table 5-3 5-11
Alpes Lasers Fields Of Applications
Table 5-4 5-13
Examples of Alpes Use A Frequency modulation technique Direct Absorption Technique:
Table 5-5 5-14
Examples of Alpes Use A Direct Absorption Technique:
Table 5-6 5-15
Alpes List Of Customers:
Table 5-7 5-16
Cascade Technologies Positioning of Mid IR Sensors
Table 5-8 5-25
Directed Vapor Deposition (DVD) Physical Vapor Deposition Coating Technologies Process Advantages
Table 5-8 (Continued) 5-26
Directed Vapor Deposition (DVD) Physical Vapor Deposition Coating Technologies Process Advantages
Table 5-9 5-28
Direct Vapor Technology Ongoing projects
Table 5-10 5-29
Direct Vapor Technology Recent Projects
Table 5-10 (Continued) 5-30
Direct Vapor Technology Recent Projects
Figure 5-11 5-31
FLIR Company Overview
Figure 5-12 5-32
FLIR Market Opportunity
Figure 5-13 5-33
FLIR Thermal Imaging Technology Positioning
Figure 5-14 5-39
FLIR Long Term Financial Model
Table 5-15 5-46
FLIR Systems Thermography And Imaging Applications
Figure 5-16 5-49
Hamamatsu Photonics Positioning
Table 5-17 5-56
Infrared Fiber Systems HP Fiber Features:
Table 5-18 5-57
Infrared Fiber Systems HP Fiber Typical Specifications:
Table 5-19 5-58
Infrared Fiber Systems HP Fiber Flexibility:
Table 5-20 5-59
Infrared Fiber Systems HP Fiber Typical Spectral Response
Table 5-21 5-62
M Squared Laser Technology Applications
Table 5-22 5-63
M Squared Laser Technology Strategic Positioning:
Figure 5-23 5-68
Initiation Of First-Ever Mid IR Roadmapping Process July 11, 2006 MIRTHE Industry Kick-off Meeting
Table 5-24 5-69
Mirthe Technology And Industry Sectors: Strategic Positioning
Figure 5-25 5-76
Mid-IR Spectrometer Electronics
Table 5-26 5-81
Nanophase Technologies Engineered Nanomaterial Products
Table 5-27 5-84
Nanophase Technologies Applications for Nanoparticles
Table 5-27 (Continued) 5-85
Nanophase Technologies Applications for Nanoparticles
Figure 5-28 5-88
Nanophase Technologies NanoGard® LL Zinc Oxide, USP
Figure 5-29 5-89
Nanophase Technologies NanoArc® Copper Oxide
Figure 5-30 5-90
Nanophase Technologies Nanomaterials Integrated Platform and Delivery Model
Figure 5-31 5-91
Nanophase Technologies Process, Engineering, and Medium
Table 5-32 5-101
NovaWave Sensor Applications Positioning
Table 5-33 5-102
NovaWave Sensor Applications
Table 5-34 1
Selected Novawave Technologies Network Of International Distributors
Figure 5-35 5-111
SenseAir CO2 Sensor Technology
Figure 5-36 5-120
Structured Materials Industries SMI Flash Evaporator
ABOUT THE COMPANY

WINTERGREEN RESEARCH, research strategy identifies market trends through reading market materials and interviewing opinion leaders. WinterGreen Research team works to gather primary information from company interviews, industry materials, and company documents to write market research studies from an independent perspective. The ability, to think about market trends is enhanced by doing it over and over for many different markets. That is what WinterGreen Research is all about: reading and thinking is an essential aspect of competitive analysis. Talking to opinion leaders is an essential aspect of producing good, reliable, independent data.

By reading the electronic equivalent of 40 feet of paper, WinterGreen Research senior analysts can learn a lot more about markets. Identification of market trends is a high priority at WinterGreen Research. As with the value proposition for competitive analysis coming from getting primary input from a range of industry participants and observers.

WinterGreen Research, founded in 1985, provides strategic market assessments in telecommunications, communications equipment, health care, Internet and advanced computer technology. Industry reports focus on opportunities that expand existing markets or develop major new markets. The reports assess new product and service positioning strategies, new and evolving technologies, and technological impact on products, services, and markets. Market shares are provided. Leading market participants are profiled, and their marketing strategies, acquisitions, and strategic alliances are discussed. The principals of WinterGreen Research have been involved in analysis and forecasting of international business opportunities in telecommunications and advanced computer technology markets for over 30 years.
ABOUT THE PRINCIPAL AUTHORS

Ellen T. Curtiss, Technical Director, co-founder of WinterGreen Research, conducts strategic and market assessments in technology-based industries. Previously she was a member of the staff of Arthur D. Little, Inc., for 23 years, most recently as Vice President of Arthur D. Little Decision Resources, specializing in strategic planning and market development services. She is a graduate of Boston University and the Program for Management Development at Harvard Graduate School of Business Administration. She is the author of recent studies on worldwide telecommunications markets, the top ten internet equipment companies, the top ten contract manufacturing companies, and the Top Ten Telecommunications market analysis and forecasts.

Susan Eustis, President, co-founder of WinterGreen Research, has done research in communications and computer markets and applications. She holds several patents in microcomputing and parallel processing. She has the original patents in electronic voting machines. She has new patent applications in format varying, multiprocessing, and electronic voting. She is the author of recent studies of the services oriented architecture, content management, mid size business middleware, worldwide energy markets, solar utility markets, solar technology markets, thin film battery markets, webcam markets, regional bell operating companies’ marketing strategies, internet equipment, biometrics, a study of internet equipment, worldwide telecommunications equipment, top ten telecommunications, digital loop carrier, web hosting, web services, nanotechnology, and application integration markets. Ms. Eustis is a graduate of Barnard College.

-ALL REPORTS ARE AVAILABLE IN EITHER PRINT OR PDF-

PDF PRINT

ENCLOSED IS MY CHECK FOR $3,400 FOR SINGLE COPY, $6,800 FOR WEB SITE POSTING

PLEASE BILL MY COMPANY USING P.O. NUMBER __

PLEASE CHARGE MY MASTERCARD/VISA/AMERICAN EXPRESS—

CARD NUMBER ___________________________ EXP. DATE __________________

The web site has a secure order form for ordering. If charging to a Credit card you may e-mail the order form, but not the card information
Fax or Call with credit card information - Do not send card number as e-mail - You may send the order as e-mail

NAME________________________________ TITLE________________________________

SIGNATURE__

COMPANY________________________________ DIVISION________________________________

ADDRESS__

CITY___ STATE / ZIP____________________

TELEPHONE__

FAX__

EMAIL__

PLEASE NOTE: RESIDENTS OF MASSACHUSETTS AND CONNECTICUT MUST INCLUDE APPROPRIATE SALES TAX

SUBSCRIBERS OUTSIDE THE UNITED STATES MUST PROVIDE PREPAYMENT IN U.S. FUNDS