Economies of scale and new levels of patient progress for longer durations are provided by rehabilitation robots. Rehabilitation robots target markets are hospital, clinical, and eventually homecare. Funding sources are immediately from the insurance companies, but beyond that from the health clubs that seek to promote health and wellness.
Rehabilitation Robot Executive Summary

50

<table>
<thead>
<tr>
<th>Rehabilitation Robot Market Driving Forces</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation Robots Assistive Devices</td>
<td>53</td>
</tr>
<tr>
<td>Rehabilitation Robots Decrease the Cost of Recovery</td>
<td>54</td>
</tr>
<tr>
<td>Rehabilitation Robot Medical Conditions Treated</td>
<td>56</td>
</tr>
<tr>
<td>Robotic Modules for Disability Therapy</td>
<td>57</td>
</tr>
<tr>
<td>Wearable Robotics for Disability Therapy</td>
<td>58</td>
</tr>
<tr>
<td>Rehabilitation Robots Leverage Principles Of Neuroplasticity</td>
<td>60</td>
</tr>
</tbody>
</table>

Rehabilitation Robot Market Shares

61

Rehabilitation Robot Market Forecasts

63

1. Rehabilitation Robot Market Description and Market Dynamics

65

1.1 Stroke Rehabilitation

65

1.1.1 Stroke Protocols

1.1.2 Rehabilitation Medicine: New Therapies in Stroke Rehabilitation

1.1.3 Botulinum Toxin Injections

1.1.4 Constraint Induced Movement Therapy (CIMT)

1.1.5 Dynamic Splinting

1.1.6 Electrical Stimulation

1.1.7 Robotic Therapy Devices

1.1.8 Partial Body Weight-Supported Treadmill

1.1.9 Virtual Reality (including Wii-hab)

1.1.10 Brain Stimulation

1.1.11 Acupuncture

1.1.12 Mental Practice
1.1.13 Mirror Therapy 71
1.1.14 Hyperbaric Oxygen Therapy 72
1.1.15 Evidence-Based Treatment Protocols 72

1.2 Exoskeleton Able-Bodied Industrial Applications 73

1.3 Restoring Physical Function Through Neuro-Rehabilitation After Stroke 74
1.3.1 Traumatic Brain Injury Program 77
1.3.2 Concussion Program 77
1.3.3 Hospital Stroke Programs Rapid Response to Create Better Outcomes 78
1.3.4 Stroke Response Process Leverage Protocols that Implement Streamlined Timely Treatment 78

1.4 Rehabilitation Physical Therapy Trends 81
1.4.1 Running with Robots 82
1.4.2 Use Of Video Game Technology In PT 83
1.4.3 Telemedicine Growing Trend In The Physical Therapy Space 84

1.5 Rehabilitation Robot Market Definition 85
1.5.1 Automated Process for Rehabilitation Robots 86
1.5.2 Why Rehabilitation is Essential 92
1.5.3 Rehabilitation Involves Relearning of Lost Functions 93

1.6 Continuous Passive Motion CPM Definition 97

1.7 Robotic Exoskeletons Empower Patient Rehabilitation Achievements 99
1.7.1 Rehabilitation Options 101
1.7.2 Rehabilitation Robots Economies Of Scale 102

1.8 Seizing the Robotics Opportunity 103
1.8.1 Modular Self-Reconfiguring Robotic Systems 104

1.9 Public Awareness of Rehabilitation Robotics 104
1.9.1 Rehabilitation Robotics Centers Of Excellence 105
Table of Contents

1. Home Medical Rehabilitation Robots 106
 1.1 US Veterans Administration Telemedicine and Domestic Robots 106
 1.2 Rehabilitation Robots Provide Intensive Training For Patients And Physical Relief For Therapists 108

2. Rehabilitation Robot Market Shares and Market Forecasts 109
 2.1 Rehabilitation Robot Market Driving Forces 109
 2.1.1 Rehabilitation Robots Assistive Devices 112
 2.1.2 Rehabilitation Robots Decrease the Cost of Recovery 113
 2.1.3 Rehabilitation Robot Medical Conditions Treated 115
 2.1.4 Robotic Modules for Disability Therapy 116
 2.1.5 Wearable Robotics for Disability Therapy 117
 2.1.6 Rehabilitation Robots Leverage Principles Of Neuroplasticity 119
 2.2 Rehabilitation Robot Market Shares 120
 2.2.1 AlterG Bionic Leg Customer Base 123
 2.2.2 Myomo 123
 2.2.3 Bionik Laboratories / Interactive Motion Technologies (IMT) 125
 2.2.4 Bionik Laboratories / Interactive Motion Technologies (IMT) InMotion Robots 126
 2.2.5 Hocoma Robotic Rehabilitation 127
 2.2.6 Homoca Helping Patients To Grasp The Initiative And Reach Towards Recovery 128
 2.2.7 Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again 132
 2.2.8 Rewalk 133
 2.2.9 Karman Xo-202 Standing Wheelchair Power Stand Power Drive 134
 2.2.10 Patterson Medical 135
 2.2.11 Rehabilitation Robot Market Share Unit Analysis 135
 2.2.12 Motorized CPM Stroke Rehabilitation Equipment Market Shares 138
 2.2.13 Medical Rehabilitation Robot Market Analysis 140
 2.3 Rehabilitation Robot Market Forecasts 143
2.3.1 Rehabilitation Robot Unit Shipments 147
2.3.2 Rehabilitation Robots Market Segments: Lower Extremities, Upper Extremities, Neurological Training, Exoskeleton, Stroke CPM 148
2.3.3 Rehabilitation Therapy Robots: Dollars and Units, High End, Mid-Range, and Low End, Shipments 152
2.3.4 Rehabilitation Robot Market Penetration Forecasts Worldwide, 2014-2020 154
2.3.5 Market Metrics 158

2.4 Types of Conditions and Rehabilitation Treatment by Condition 159
2.4.1 Stroke 159
2.4.2 Early Rehab After Stroke 160
2.4.3 Multiple Sclerosis 160
2.4.4 Knee-Replacement Surgery 161
2.4.5 Hip 162
2.4.6 Gait Training 163
2.4.7 Sports Training 164
2.4.8 Severe Injury or Amputation 164
2.4.9 Neurological Disorders 165
2.4.10 Recovery After Surgery 166

2.5 Types of Rehabilitation Robots and Conditions Treated 166
2.5.1 Gait Training Devices / Unweighting Systems 166
2.5.2 Neuro-Rehabilitation 167
2.5.3 Prostheses 170
2.5.4 Motorized Physiotherapy CPM (Continuous Passive Motion), CAM Therapy (Controlled Active Motion) and the Onboard Protocols 170
2.5.5 Gait Training Devices / Unweighting Systems / Automated Treadmills 170
2.5.6 Rehabilitation Therapy Robotics Market 171
2.5.7 Upper Limb Robotic Rehabilitation 171
2.5.8 Shoulder Biomechanics 172
2.5.9 Exoskeletons 174
2.5.10 End-effectors 174
2.5.11 Exoskeleton-Based Rehabilitation 174
2.5.12 Mobility Training Level Of Distribution 175
2.5.13 Rehabilitation Robots Cost-Benefit-Considerations 176
2.5.14 Rehabilitation Systems 177
2.5.15 Spinal Cord Injuries 178

2.6 Rehabilitation Robot And Motorized CPM Equipment 179

2.7 Disease Incidence and Prevalence Analysis 182
2.7.1 Robotic Therapeutic Stroke Rehabilitation 182
2.7.2 Aging Of The Population 183
2.7.3 Disease Rehabilitation 184
2.7.1 Rehabilitation of Hip Injuries 185

2.8 Service Robots 186
2.8.1 iRobot / InTouch Health 187
2.8.2 Next Generation Personal And Service Robotics 189

2.9 Rehabilitation Robotics Prices 190
2.9.1 Danniflex 480 Lower Limb CPM Unit 190
2.9.2 Shop for Patterson Kinetec CPM 191
2.9.3 Chattanooga Atromot 197
2.9.4 Ekso Bionics 207
2.9.5 Interaxon Muse 208

2.10 Rehabilitation Robotics Regional Analysis 209
2.10.1 Ekso Bionics Regional Presence 210

3. Rehabilitation Robots, Active Prostheses, and Exoskeleton Products 212
3.1 Lower limb Stroke Rehabilitation Devices 212
3.2 Hocoma Products

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Hocoma Andago</td>
<td>213</td>
</tr>
<tr>
<td>3.2.2 Hocoma Supports Clinicians And Patients In Neurorehabilitation</td>
<td>219</td>
</tr>
<tr>
<td>3.2.3 Hocoma’s Lokomat Gait Orthosis Automates Locomotion Therapy On A Treadmill</td>
<td>219</td>
</tr>
<tr>
<td>3.2.4 Hocoma Lokomat Intensive Locomotion Therapy</td>
<td>220</td>
</tr>
<tr>
<td>3.2.5 Hocoma Lokomat Training</td>
<td>220</td>
</tr>
<tr>
<td>3.2.6 Hocoma Lokomat Robotic Gait-Training Device Aims To Change The Part Of The Brain That Controls Motor Function</td>
<td>221</td>
</tr>
<tr>
<td>3.2.7 Hocoma Lokomat Functional Electrical Stimulation</td>
<td>223</td>
</tr>
<tr>
<td>3.2.8 Hocoma Lokomat Advanced Motion Analysis</td>
<td>223</td>
</tr>
<tr>
<td>3.2.9 Hocoma Rehabilitation Robotics</td>
<td>226</td>
</tr>
<tr>
<td>3.2.10 Hocoma ArmeoSpring for Stroke Victims</td>
<td>230</td>
</tr>
<tr>
<td>3.2.11 Hocoma ArmeoSpring Based On An Ergonomic Arm Exoskeleton</td>
<td>232</td>
</tr>
<tr>
<td>3.2.12 Hocoma Armeo®Spring Clinical Success</td>
<td>233</td>
</tr>
<tr>
<td>3.2.13 Hocoma Armeo Functional Therapy Of The Upper Extremities</td>
<td>234</td>
</tr>
<tr>
<td>3.2.14 Hocoma Armeo®Spring - Functional Arm and Hand Therapy</td>
<td>235</td>
</tr>
<tr>
<td>3.2.15 Hocoma Valedo Functional Movement Therapy For Low Back Pain Treatment</td>
<td>237</td>
</tr>
<tr>
<td>3.2.16 Hocoma Sensor-Based Back Training For Valedo®Motion</td>
<td>239</td>
</tr>
<tr>
<td>3.2.17 Hocoma Erigo Early Rehabilitation And Patient Mobilization</td>
<td>239</td>
</tr>
<tr>
<td>3.2.18 Hocoma Early Rehabilitation with Robotic Mobilization and Functional Electrical Stimulation</td>
<td>240</td>
</tr>
</tbody>
</table>

3.3 Hobart Group / MedInvest Group / Motorika

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Motorika ReoGo</td>
<td>242</td>
</tr>
<tr>
<td>3.3.2 Hobart Motorik ReoGo Portable Platform Shoulder, Elbow, And Forearm – Improvements Maintained Over Time</td>
<td>243</td>
</tr>
<tr>
<td>3.3.3 Motorika ReoAmbulator Innovative Robotic Gait Training System</td>
<td>247</td>
</tr>
<tr>
<td>3.3.4 Motorika</td>
<td>248</td>
</tr>
</tbody>
</table>

3.4 Interactive Motor Technologies Anklebot

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1 IMT Anklebot Evidence-Based Neurorehabilitation Technology</td>
<td>250</td>
</tr>
</tbody>
</table>
3.4.2 Interactive Motion Technologies (IMT) InMotion Robots Stroke Recovery 253
3.4.3 Biomarkers Of Motor Recovery 255
3.4.4 Robotic Tools For Neuro-Rehabilitation 255
3.4.5 Interactive Motion Technologies (IMT) Stroke — Upper Extremity Rehabilitation 256
3.4.6 Interactive Motion Technologies (IMT) Robot Provides Long Lasting Rehabilitation Improvements 257
3.4.7 InMotion Robot Medical Conditions Treated 259
3.4.8 InMotion HAND™ Robot 263
3.4.9 InMotion ARM™: Clinical Version Of The MIT-Manus 265
3.4.10 Interactive Motion Technologies (IMT) InMotion ARM™ Software 268
3.4.11 Interactive Motion Technologies (IMT) InMotion EVAL™ 271
3.4.12 Interactive Motion Technologies (IMT) Maximum Shoulder Force 272
3.4.13 Interactive Motion Technologies (IMT) Long Lasting Improvements 278
3.4.14 MIT-MANUS 280

3.5 AlterG 282
3.5.1 AlterG M320 Anti-Gravity Treadmill 282
3.5.2 AlterG® Anti-Gravity Treadmill in Action 283
3.5.3 AlterG: PK100 PowerKnee 285
3.5.4 AlterG Bionic Leg 287
3.5.5 AlterG / Tibion Bionic Leg 290
3.5.6 AlterG Bionic Leg Customer Base 292
3.5.7 AlterG M300 292
3.5.8 AlterG M300 Robotic Rehabilitation Treadmill 296

3.6 Biodex Unweighting Systems 298
3.6.1 Biodex Objective Data 299
3.6.2 Biodex BioStep® 2 Semi-Recumbent Elliptical 300
3.6.3 Biodex BioStep 2 Helps Patients and Their Therapists Achieve Multiple Rehabilitation Objectives 301
3.6.4 Older Adults / Preambulation 301
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.5</td>
<td>Cardiac Rehabilitation</td>
<td>301</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Biodex System 4 Pro</td>
<td>302</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Biodex Balance System™ SD</td>
<td>303</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Pneumex Unweighting Systems from Biodex</td>
<td>307</td>
</tr>
<tr>
<td>3.7</td>
<td>Honda Gait Training</td>
<td>308</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Honda Motor ASIMO Humanoid Robot</td>
<td>312</td>
</tr>
<tr>
<td>3.8</td>
<td>Mobility Research</td>
<td>317</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Mobility Research HugN-Go</td>
<td>317</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Mobility Research HugN-Go 350</td>
<td>317</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Mobility Research HugN-Go 250</td>
<td>319</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Mobility Research HugN-Go 100</td>
<td>321</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Mobility Research LiteGait</td>
<td>323</td>
</tr>
<tr>
<td>3.9</td>
<td>Upper Limb Stroke Rehabilitation Devices</td>
<td>326</td>
</tr>
<tr>
<td>3.10</td>
<td>Tyromotion</td>
<td>327</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Tyromotion Diego - Robotic-assisted arm-rehabilitation</td>
<td>335</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Tyromotion Therapy for Arms and Shoulders</td>
<td>336</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Tyromotion Evaluation and Therapy</td>
<td>337</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Tyromotion Pablo – Hand-Arm Rehabilitation</td>
<td>338</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Tyromotion TYMO – Therapy Board</td>
<td>342</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Tyromotion AMADEO® -For Individual Fingers or the Entire Hand Neurological Rehabilitation</td>
<td>345</td>
</tr>
<tr>
<td>3.10.7</td>
<td>Amado® Finger-Hand Rehabilitation</td>
<td>347</td>
</tr>
<tr>
<td>3.10.8</td>
<td>Tyromotion Amadeo® System Premier Mechatronic Finger Rehabilitation Device</td>
<td>351</td>
</tr>
<tr>
<td>3.11</td>
<td>Myomo</td>
<td>353</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Myomo MyoPro Motion G – Elbow-Wrist-Hand Orthosis</td>
<td>353</td>
</tr>
<tr>
<td>3.11.2</td>
<td>MyoPro Myoelectric Orthotics And Prosthetics</td>
<td>355</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Myomo Neuro-Robotic Myoelectric Arm Orthosis System</td>
<td>356</td>
</tr>
</tbody>
</table>
3.11.4 Myomo Brace For Medical Professionals Permits A Paralyzed Individual To Perform Activities Of Daily Living 357
3.11.5 Myomo EMG 359
3.11.6 Myomo mPower 1000 Indications For Use 360
3.11.7 Myomo mPower 1000 Warnings 361

3.12 Focal Meditech BV Mealtime Support and Stress Reduction: Hand Function 362
3.12.1 Focal Meditech BV Personal Robot Jaco 363
3.12.2 Focal Meditech BV Dynamic Rehabilitation Robotic Arm Supports 363
3.12.3 Focal Meditech BV Innovative Assistive Technology 366

3.13 Catholic University of America Arm Therapy Robot ARMin III 369
3.13.1 Catholic University of America Armin Iii Project Description: 370
3.13.2 Catholic University of America HandSOME Hand Spring Operated Movement Enhancer 371

3.14 Kinova Robotarm Jaco 371
3.14.1 Invacare / Kinova 375

3.15 Neurological Training 376
3.15.1 Neuro-Rehabilitation 377

3.16 Interaxon 377
3.16.1 Interaxon Muse: Brainwave Category Biometrics 381
3.16.2 InteraXon Motivates Change Of Brain 383
3.16.3 Interaxon Muse Improves Response To Stress, Lowers Blood Pressure 383
3.16.4 Interaxon Muse Gives Self-Control 384
3.16.5 Interaxon Muse Can Improve Emotional State 385
3.16.6 Interaxon Muse Extended Use Lasting Results 386
3.16.7 Interaxon Muse Types of Feedback 386

3.17 Active Prostheses 387
3.17.1 Neuronal-Device Interfaces 388
Rehabilitation Robots: Table of Contents and List of Tables and Figures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18</td>
<td>Orthocare Innovations Prosthesis</td>
<td>388</td>
</tr>
<tr>
<td>3.18.1</td>
<td>Orthocare Innovations Edison™ Adaptive Vacuum Suspension System</td>
<td>390</td>
</tr>
<tr>
<td>3.18.2</td>
<td>Orthocare Innovations Edison Adaptive Prosthesis</td>
<td>391</td>
</tr>
<tr>
<td>3.18.3</td>
<td>Orthocare Innovations Intelligent Adaptive Prosthesis</td>
<td>391</td>
</tr>
<tr>
<td>3.18.4</td>
<td>Orthocare Innovations Edison Leg and Ankle</td>
<td>392</td>
</tr>
<tr>
<td>3.18.5</td>
<td>Orthocare Innovations Europa</td>
<td>398</td>
</tr>
<tr>
<td>3.18.6</td>
<td>Orthocare Innovations Galileo Connector Technology</td>
<td>399</td>
</tr>
<tr>
<td>3.19</td>
<td>RSL Steeper Hand Prostheses</td>
<td>400</td>
</tr>
<tr>
<td>3.19.1</td>
<td>RSL Steeper Electronic Assistive Technology Devices for the Home</td>
<td>400</td>
</tr>
<tr>
<td>3.20</td>
<td>Pererro - Switch</td>
<td>Access</td>
</tr>
<tr>
<td>3.20.1</td>
<td>Pererro+</td>
<td>402</td>
</tr>
<tr>
<td>3.20.2</td>
<td>RSL Steeper V3 Myoelectric Hand</td>
<td>404</td>
</tr>
<tr>
<td>3.21</td>
<td>Touch Bionics’ i-limb</td>
<td>408</td>
</tr>
<tr>
<td>3.21.1</td>
<td>Touch Bionics i-limb Muscle Triggers</td>
<td>409</td>
</tr>
<tr>
<td>3.21.2</td>
<td>Touch Bionics I-Limb Methods For Switching Modes</td>
<td>410</td>
</tr>
<tr>
<td>3.21.3</td>
<td>Touch Bionics Prostheses</td>
<td>414</td>
</tr>
<tr>
<td>3.21.4</td>
<td>Touch Bionics Active Prostheses</td>
<td>420</td>
</tr>
<tr>
<td>3.22</td>
<td>RU Robots</td>
<td>423</td>
</tr>
<tr>
<td>3.22.1</td>
<td>RU Robots Sunflower Robot</td>
<td>425</td>
</tr>
<tr>
<td>3.22.2</td>
<td>RU Robots Sophisticated Interactions</td>
<td>426</td>
</tr>
<tr>
<td>3.22.3</td>
<td>RU Robots Care-o-bot</td>
<td>428</td>
</tr>
<tr>
<td>3.23</td>
<td>Instead Technologies</td>
<td>429</td>
</tr>
<tr>
<td>3.23.1</td>
<td>Instead Technologies RoboTherapist3D and 2D</td>
<td>430</td>
</tr>
<tr>
<td>3.23.2</td>
<td>Instead Technologies RoboTherapist3D</td>
<td>430</td>
</tr>
<tr>
<td>3.23.3</td>
<td>Instead Technologies Ultrasound Breast Volumes BreastExplorer</td>
<td>435</td>
</tr>
<tr>
<td>3.23.4</td>
<td>Instead Technologies Technology-Based Company</td>
<td>438</td>
</tr>
<tr>
<td>3.23.5</td>
<td>Instead Technologies Services:</td>
<td>440</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.24</td>
<td>Humanware In-Home Rehabilitation</td>
<td>441</td>
</tr>
<tr>
<td>3.25</td>
<td>Exoskeletons</td>
<td>441</td>
</tr>
<tr>
<td>3.25.1</td>
<td>Muscle Memory</td>
<td>442</td>
</tr>
<tr>
<td>3.26</td>
<td>Ekso Bionics</td>
<td>443</td>
</tr>
<tr>
<td>3.26.1</td>
<td>Ekso Bionics Wearable Bionic Suit</td>
<td>444</td>
</tr>
<tr>
<td>3.26.2</td>
<td>Ekso Gait Training Exoskeleton Uses</td>
<td>451</td>
</tr>
<tr>
<td>3.26.3</td>
<td>Ekso Bionics Rehabilitation</td>
<td>455</td>
</tr>
<tr>
<td>3.26.4</td>
<td>Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again</td>
<td>458</td>
</tr>
<tr>
<td>3.27</td>
<td>Rewalk</td>
<td>459</td>
</tr>
<tr>
<td>3.28</td>
<td>Permobil F5 Corpus V5 Stand Sequence</td>
<td>461</td>
</tr>
<tr>
<td>3.29</td>
<td>Karman Xo-202 Standing Wheelchair Power Stand Power Drive</td>
<td>462</td>
</tr>
<tr>
<td>3.30</td>
<td>Berkeley Robotics Laboratory Exoskeletons</td>
<td>465</td>
</tr>
<tr>
<td>3.30.1</td>
<td>Berkeley Robotics Austin</td>
<td>465</td>
</tr>
<tr>
<td>3.30.2</td>
<td>Berkley Robotics and Human Engineering Laboratory ExoHiker</td>
<td>466</td>
</tr>
<tr>
<td>3.30.3</td>
<td>Berkley Robotics and Human Engineering Laboratory ExoClimber</td>
<td>468</td>
</tr>
<tr>
<td>3.30.4</td>
<td>Berkley Lower Extremity Exoskeleton (BLEEX)</td>
<td>470</td>
</tr>
<tr>
<td>3.30.5</td>
<td>Berkley Robotics and Human Engineering Laboratory Exoskeleton</td>
<td>470</td>
</tr>
<tr>
<td>3.31</td>
<td>Reha-Stim Gait Trainer GT I</td>
<td>472</td>
</tr>
<tr>
<td>3.31.1</td>
<td>Reha-Stim Gait Trainer Target Market</td>
<td>475</td>
</tr>
<tr>
<td>3.31.2</td>
<td>Reha-Stim Bi-Manu-Track</td>
<td>476</td>
</tr>
<tr>
<td>3.31.3</td>
<td>Reha-Stim Bi-Manu-Track Hand and Wrist</td>
<td>476</td>
</tr>
<tr>
<td>3.32</td>
<td>Exoskeleton Designed by CAR</td>
<td>479</td>
</tr>
<tr>
<td>3.33</td>
<td>CAREX Upper Limb Robotic Exoskeleton</td>
<td>480</td>
</tr>
<tr>
<td>3.34</td>
<td>Egto Tech</td>
<td>482</td>
</tr>
<tr>
<td>3.34.1</td>
<td>Egto Tech Luna Dynamic Resistance</td>
<td>483</td>
</tr>
</tbody>
</table>
3.34.2 Egto Tech Luna Objective Diagnostics 483

3.35 Motorized Physiotherapy CPM (Continuous Passive Motion), CAM Therapy (Controlled Active Motion) and the Onboard Protocols 484
3.35.1 Movement Of Synovial Fluid To Allow For Better Diffusion Of Nutrients Into Damaged Cartilage 486

3.36 Chattanooga Active-K CPM (Continuous Passive Motion) 487
3.36.1 Chattanooga OptiFlex® 3 Knee Continuous Passive Motion (CPM) 497
3.36.2 Continuous Passive Motion Machines (CPM) 499
3.36.3 Chattanooga OptiFlex Ankle Continuous Passive Motion (CPM) 501
3.36.4 Chattanooga OptiFlex S Shoulder Continuous Passive Motion (CPM) 504
3.36.5 Chattanooga OptiFlex Elbow Continuous Passive Motion (CPM) 507
3.36.6 Chattanooga OptiFlex S Shoulder Continuous Passive Motion (CPM) 510

3.37 Paterson Kinetec CPM 512
3.37.1 Paterson / Kinetec Spectra Knee CPM 513

3.38 Global Medical 516

3.39 Furniss Corporation 520
3.39.1 Furniss Corporation Continuous Passive Motion DC2480 Knee CPM 526

3.40 Danniflex 528
3.40.1 Danniflex 480 Lower Limb CPM Unit 529

3.41 Rehab-Robotics Company 531
3.41.1 Rehab-Robotics Hand of Hope 533
3.41.2 Rehab-Robotics Hand & Arm Training 538

3.42 Bioxtreme 540

3.43 Corbys 541
3.43.1 Corbys System Overview 542
4. Rehabilitation Robots Technology

4.1 Robotic Actuator Energy

- **4.1.1 Elastic Actuators**
- **4.1.2 InMotion Robots Technology**

4.2 Human Motor Error Enhancement Technology

- **4.2.1 Enhancing a Motor Error Improves Motor Skills**
- **4.2.2 Adaptation to Error Enhancing Forces**
- **4.2.3 Bioxtreme’s Error Enhancement Technology Potential Applications**

4.3 Rehabilitation Robotic Risk Mitigation

4.4 Rehabilitation Robot Multi-Factor Solutions

- **4.4.1 Biometallic Materials Titanium (Ti) and its Alloys**

4.5 Berkley Robotics and Human Engineering Laboratory

4.6 Rehabilitation Robot Automated Technique

- **4.6.1 InMotion Robots Technology**

4.7 HEXORR: Hand EXOskeleton Rehabilitation Robot

4.8 ARMin: Upper Extremity Robotic Therapy

4.9 HandSOME: Hand Spring Operated Movement Enhancer

4.10 Cognitive Science

4.11 Lopes Gait Rehabilitation Device

4.12 Artificial Muscle

4.13 ReWalk™ Exoskeleton Suit
5. Rehabilitation Robot Company Profiles

5.1 AlterG

- **5.1.1** AlterG M300 Customers
- **5.1.2** AlterG M300
- **5.1.3** AlterG™ Acquires Tibion Bionic Leg

5.2 Aretech

5.3 Berkley Robotics and Human Engineering Laboratory

5.4 Biodex

- **5.4.1** Biodex Clinical Advantage

5.5 Bioness

5.6 Bionik Laboratories / Interactive Motion Technologies (IMT)

- **5.6.1** Bionik Laboratories Acquires Interactive Motion Technologies, Inc. (IMT)
- **5.6.2** InMotion Robots for NHS study in the UK
- **5.6.3** Interactive Motion Technologies (IMT) InMotion Robots

5.7 Bioxtreme

5.8 Breg

5.9 Catholic University of America HandSOME Hand Spring Operated Movement Enhancer

5.10 Claflin Rehabilitation Distribution

5.11 DJO Global

- **5.11.1** DJO Global Trademarks, Service Marks And Brand Names
- **5.11.2** DJO Global Business Activities
- **5.11.3** DJO / Chattanooga
- **5.11.4** Chattanooga OptiFlex® Knee Continuous Passive Motion (CPM)

5.12 Ekso Bionics
5.12 Ekso Rehabilitation Robotics

- 5.12.1 Ekso Rehabilitation Robotics 622
- 5.12.2 Ekso GT 622
- 5.12.3 Ekso Fourth Quarter And Full Year 2015 Financial Results 626
- 5.12.4 Ekso Bionics Seeks To Lead The Technological Revolutions 626
- 5.12.5 Ekso Bionics HULC Technology Licensed to the Lockheed Martin Corporation 628
- 5.12.6 Ekso Bionics Regional Presence 628
- 5.12.7 Ekso Bionics Customers 629
- 5.12.8 Ekso and Lockheed 637

5.13 Fanuc

- 5.13.1 Fanuc Revenue 638
- 5.13.2 Fanuc - Industrial Robot Automation Systems and Robodrill Machine Centers 640

5.14 Focal Meditech

- 5.14.1 Focal Meditech BV Collaborating Partners: 642

5.15 Hobart Group / Motorika

- 5.15.1 Motorika 644

5.16 Hocoma

- 5.16.1 Hocoma Revenue 649
- 5.16.2 Hocoma Partnership With The Slovenian Software Company XLAB 650

5.17 Honda Motor

- 5.17.1 Honda Motor Revenue 651
- 5.17.2 Honda Automobile Business 652
- 5.17.3 Honda Walk Assist 654
- 5.17.4 Honda Prototype Stride Management Motorized Assist Device 656
- 5.17.5 Honda Builds Unique Transportation Exoskeleton Device Market 657

5.18 Instead Technologies

- 5.18.1 Instead Technologies Services: 660
5.19 Interaxon 661

5.20 iRobot 662
 5.20.1 iRobot Home Robots 663
 5.20.2 iRobot Defense and Security: Protecting Those In Harm’s Way 664
 5.20.3 iRobot Remote Presence: Brings Meaningful Communication 664
 5.20.4 iRobot STEM 666
 5.20.5 iRobot Internet of Things 667
 5.20.6 iRobot / InTouch Health 667

5.21 Karman 670

5.22 KDM 672

5.23 Kinova 673
 5.23.1 Kinova JACO 673

5.24 KLC Services 673

5.25 Medi 674

5.26 Mobility Research 674

5.27 MRISAR 676

5.28 Myomo 676
 5.28.1 Myomo mPower 1000 677

5.29 Orthocare Innovations 678
 5.29.1 Orthocare Innovations Adaptive Systems™ For Advanced O&P Solutions. 678
 5.29.2 Orthocare Innovations Company Highlights 679

5.30 Patterson Companies, Inc. 680
 5.30.1 PMI Acquires Mobilis Healthcare 681
 5.30.2 Patterson Companies Medical (PMI) Business Segments 682
Rehabilitation Robots: Table of Contents and List of Tables and Figures

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.31</td>
<td>Patterson Medical / Madison Dearborn Partners</td>
<td>683</td>
</tr>
<tr>
<td>5.31.1</td>
<td>Patterson Medical Strategy</td>
<td>683</td>
</tr>
<tr>
<td>5.31.2</td>
<td>Patterson Medical Brands</td>
<td>684</td>
</tr>
<tr>
<td>5.31.3</td>
<td>Patterson Medical Rehabilitation Supply</td>
<td>685</td>
</tr>
<tr>
<td>5.31.4</td>
<td>Patterson Medical International Operations</td>
<td>687</td>
</tr>
<tr>
<td>5.31.5</td>
<td>Patterson Medical Consumables</td>
<td>689</td>
</tr>
<tr>
<td>5.31.6</td>
<td>Patterson Medical Equipment and Software</td>
<td>689</td>
</tr>
<tr>
<td>5.32</td>
<td>ProMed Products Xpress</td>
<td>690</td>
</tr>
<tr>
<td>5.33</td>
<td>Rehab-Robotics Company</td>
<td>690</td>
</tr>
<tr>
<td>5.34</td>
<td>Reha-Stim</td>
<td>691</td>
</tr>
<tr>
<td>5.34.1</td>
<td>Reha-Stim Support Patients In Restoring And Improving Gait Function</td>
<td>691</td>
</tr>
<tr>
<td>5.34.2</td>
<td>Reha-Stim Support Patients In Restoring Arm And Hand Function</td>
<td>691</td>
</tr>
<tr>
<td>5.35</td>
<td>Reha Technology</td>
<td>692</td>
</tr>
<tr>
<td>5.36</td>
<td>ReWalk Robotics</td>
<td>695</td>
</tr>
<tr>
<td>5.37</td>
<td>Robotdalen</td>
<td>696</td>
</tr>
<tr>
<td>5.38</td>
<td>RSL Steeper</td>
<td>698</td>
</tr>
<tr>
<td>5.39</td>
<td>RU Robots</td>
<td>700</td>
</tr>
<tr>
<td>5.40</td>
<td>Secom</td>
<td>701</td>
</tr>
<tr>
<td>5.40.1</td>
<td>Secom Co.Ltd MySpoon</td>
<td>702</td>
</tr>
<tr>
<td>5.40.2</td>
<td>Secom Co.Ltd MySpoon Manual Mode</td>
<td>702</td>
</tr>
<tr>
<td>5.40.3</td>
<td>Secom Co.Ltd MySpoon Semi-automatic Mode</td>
<td>704</td>
</tr>
<tr>
<td>5.40.4</td>
<td>Secom Co. Ltd MySpoon Automatic Mode</td>
<td>706</td>
</tr>
<tr>
<td>5.41</td>
<td>Sunrise Medical</td>
<td>707</td>
</tr>
<tr>
<td>5.41.1</td>
<td>Sunrise Medical Quality Policy</td>
<td>709</td>
</tr>
<tr>
<td>5.41.2</td>
<td>Sunrise Medical Whitmyer Biomechanics</td>
<td>709</td>
</tr>
</tbody>
</table>
List of Tables and Figures

<table>
<thead>
<tr>
<th>Table ES-1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation Robotics Products Market Driving Factors:</td>
<td>51</td>
</tr>
<tr>
<td>Table ES-2</td>
<td>55</td>
</tr>
<tr>
<td>Rehabilitation Robot Market Driving Forces</td>
<td>55</td>
</tr>
<tr>
<td>Table ES-3</td>
<td>56</td>
</tr>
<tr>
<td>Rehabilitation Robot Medical Conditions Treated</td>
<td>56</td>
</tr>
<tr>
<td>Table ES-4</td>
<td>57</td>
</tr>
<tr>
<td>Stroke Rehabilitation Guidelines For Interactive Robotic Therapy</td>
<td>57</td>
</tr>
<tr>
<td>Table ES-5</td>
<td>58</td>
</tr>
<tr>
<td>Extremity Rehabilitation Robot Technology</td>
<td>58</td>
</tr>
<tr>
<td>Table ES-6</td>
<td>59</td>
</tr>
</tbody>
</table>
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Health Care Conditions Treated With Rehabilitation Wearable Robotics 59
Table ES-7 61
Robotic Technologies Leverage Principles Of Neuroplasticity 61
Figure ES-8 62
Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015 62
Figure ES-9 64
Rehabilitation Robot Market Forecasts Dollars, Worldwide, 2016-2022 64
Table 1-1 67
Stroke Rehabilitation Technology Modalities 67
Table 1-2 75
Neuro-Rehabilitation patient Conditions Addressed 75
Table 1-3 76
Neuro-rehabilitation Services 76
Table 1-4 79
Stroke Response Process Leverage Protocols Interdisciplinary Teams 79
Table 1-5 80
Stroke Treatment State-Of-The-Art, Full-Service Stroke Treatment Facilities 80
Table 1-6 88
Robotic Rehabilitation Devices Automated Process Benefits 88
Table 1-7 91
Robotic Rehabilitation Devices Emerging Technologies 91
Table 1-8 92
Robotic Rehabilitation Wearable Devices Benefits 92
Table 1-9 94
Rehabilitation Involves Relearning Lost Function 94
Table 1-10 95
Rehabilitation Lost Function Relearning Initiatives 95
Table 1-11 98
CPM Functions: 98
Table 1-12 99
CPM Use Indications: 99
Table 2-1
Rehabilitation Robotics Products Market Driving Factors: 110
Table 2-2
Rehabilitation Robot Market Driving Forces 114
Table 2-3
Rehabilitation Robot Medical Conditions Treated 115
Table 2-4
Stroke Rehabilitation Guidelines For Interactive Robotic Therapy 116
Table 2-5
Extremity Rehabilitation Robot Technology 117
Table 2-6
Health Care Conditions Treated With Rehabilitation Wearable Robotics 118
Table 2-7
Robotic Technologies Leverage Principles Of Neuroplasticity 120
Figure 2-8
Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015 121
Table 2-9
Rehabilitation Robot Market Shares, Dollars, Worldwide, 2015 122
Table 2-10
Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine: 127
Figure 2-11
Hocoma Continuum of Rehabilitation 130
Figure 2-12
Comparison of the Hocoma Armeo Products 131
Figure 2-13
Karman Xo-202 Standing Wheelchair Power Stand Power Drive 134
Table 2-14
Rehabilitation Therapy Robots Market Shares, Units, Worldwide, 2014 136
Table 2-15
Rehabilitation Therapy Robots Market Shares, Units, Worldwide, 2015 137
Table 2-16
139
Rehabilitation Robots: Table of Contents and List of Tables and Figures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorized CPM Stroke Rehabilitation Equipment Market Shares, Unit and Dollars, Worldwide, 2015</td>
<td>139</td>
</tr>
<tr>
<td>Figure 2-17</td>
<td>144</td>
</tr>
<tr>
<td>Rehabilitation Robot Market Forecasts Dollars, Worldwide, 2016-2022</td>
<td>144</td>
</tr>
<tr>
<td>Table 2-18</td>
<td>145</td>
</tr>
<tr>
<td>Rehabilitation Robots Market Forecasts, Dollars, Shipments, Worldwide, 2016-2022</td>
<td>145</td>
</tr>
<tr>
<td>Table 2-19</td>
<td>147</td>
</tr>
<tr>
<td>Rehabilitation Robots: Units Shipments, Worldwide, 2016-2022</td>
<td>147</td>
</tr>
<tr>
<td>Table 2-20</td>
<td>149</td>
</tr>
<tr>
<td>Table 2-21</td>
<td>150</td>
</tr>
<tr>
<td>Table 2-22</td>
<td>151</td>
</tr>
<tr>
<td>Rehabilitation Robots Market Segments</td>
<td>151</td>
</tr>
<tr>
<td>Table 2-23</td>
<td>152</td>
</tr>
<tr>
<td>Rehabilitation Extremity Physical Therapy Robots Market Forecasts: Dollars and Units, High End, Mid-Range, and Low End, Shipments, Worldwide, 2016-2022</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Figure 2-24</td>
<td>154</td>
</tr>
<tr>
<td>Table 2-25</td>
<td>155</td>
</tr>
<tr>
<td>Rehabilitation Facility Robot Market Penetration Forecasts Worldwide, 2016-2022</td>
<td>155</td>
</tr>
<tr>
<td>Table 2-26</td>
<td>156</td>
</tr>
<tr>
<td>Rehabilitation Small and Mid-Size Facility Robot Market Penetration Forecasts Worldwide, 2014-2020</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Figure 2-27</td>
<td>162</td>
</tr>
<tr>
<td>Chattanooga OptiFlex® 3 Knee Continuous Passive Motion (CPM) Device</td>
<td>162</td>
</tr>
<tr>
<td>Table 2-28</td>
<td>178</td>
</tr>
<tr>
<td>Rehabilitation Robot Categories</td>
<td>178</td>
</tr>
<tr>
<td>Table 2-29</td>
<td>179</td>
</tr>
<tr>
<td>Spinal Cord Injury Causes Worldwide, 2014</td>
<td>179</td>
</tr>
</tbody>
</table>
Table 2-30
Motorized CPM Stroke Rehabilitation Equipment Market Shares, Unit and Dollars, Worldwide, 2015

Table 2-31
Rehabilitation Robot CPM Market Segments, Worldwide, 2015-2021

Table 2-32
US Stroke Incidence Numbers

Table 2-33
Physical Therapy Enhances Recovery After Hip Injury

Figure 2-34
iRobot / InTouch Health RP-VITA

Figure 2-35
Chattanooga Continuous Passive Motion

Figure 2-36
Rehabilitation Robot Regional Market Segments, Dollars, 2015

Table 2-37
Rehabilitation Robot Regional Market Segments, 2015

Figure 2-38
Ekso Bionics Regional Presence

Source: Ekso Bionics.

Lower Limb Stroke Rehabilitation Devices 212
Figure 3-1 213
Hocoma Andago 213
Figure 3-2 215
Hocoma Lokomat Pro 215
Table 3-3 216
Hocoma Patient Rehabilitation Conditions Addressed 216
Table 3-4 217
Hocoma Robotic Improvements to Rehabilitation 217
Table 3-5 218
Hocoma Products 218
Table 3-6 218
Hocoma Rehabilitation Functional Therapy 218
Table 3-7 220
Robotic Legs Working For Improving Cerebral Palsy 220
Figure 3-8 224
Hocoma Automates Locomotion Therapy On A Treadmill 224
<table>
<thead>
<tr>
<th>Figure/Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-9</td>
<td>Hocoma Lokomat Lower Extremity Robot</td>
<td>225</td>
</tr>
<tr>
<td>3-10</td>
<td>Table 3-10</td>
<td>227</td>
</tr>
<tr>
<td>3-11</td>
<td>Hocoma Rehabilitation Robot Systems</td>
<td>227</td>
</tr>
<tr>
<td>3-12</td>
<td>Hocoma Armeo Arm Robot Systems</td>
<td>228</td>
</tr>
<tr>
<td>3-13</td>
<td>Figure 3-12</td>
<td>228</td>
</tr>
<tr>
<td>3-14</td>
<td>Hocoma ArmeoSpring for Stroke Victims</td>
<td>229</td>
</tr>
<tr>
<td>3-15</td>
<td>Figure 3-14</td>
<td>230</td>
</tr>
<tr>
<td>3-16</td>
<td>Hocoma ArmeoSpring for Children</td>
<td>230</td>
</tr>
<tr>
<td>3-17</td>
<td>Figure 3-16</td>
<td>231</td>
</tr>
<tr>
<td>3-18</td>
<td>Hocoma Armeo Power Robotic Arm Exoskeleton</td>
<td>234</td>
</tr>
<tr>
<td>3-19</td>
<td>Clinical Example of Patients Using the Hocoma Armeo®Spring</td>
<td>236</td>
</tr>
<tr>
<td>3-20</td>
<td>Table 3-17</td>
<td>237</td>
</tr>
<tr>
<td>3-21</td>
<td>Hocoma Valedo Functional Lower Back Movement Therapy</td>
<td>237</td>
</tr>
<tr>
<td>3-22</td>
<td>Table 3-18</td>
<td>238</td>
</tr>
<tr>
<td>3-23</td>
<td>Hocoma Valedo®Motion Low Back Pain Therapy Advantages</td>
<td>238</td>
</tr>
<tr>
<td>3-24</td>
<td>Figure 3-19</td>
<td>239</td>
</tr>
<tr>
<td>3-25</td>
<td>Hocoma Erigo®</td>
<td>239</td>
</tr>
<tr>
<td>3-26</td>
<td>Table 3-20</td>
<td>241</td>
</tr>
<tr>
<td>3-27</td>
<td>Hocoma Erigo Advantages of Early Rehabilitation</td>
<td>241</td>
</tr>
<tr>
<td>3-28</td>
<td>Figure 3-21</td>
<td>242</td>
</tr>
<tr>
<td>3-29</td>
<td>Motorika ReoGo</td>
<td>242</td>
</tr>
<tr>
<td>3-30</td>
<td>Table 3-22</td>
<td>245</td>
</tr>
<tr>
<td>3-31</td>
<td>Motorik ReoGo™ Therapist Benefits:</td>
<td>245</td>
</tr>
<tr>
<td>3-32</td>
<td>Table 3-23</td>
<td>246</td>
</tr>
<tr>
<td>3-33</td>
<td>Motorik ReoGo™ Patient Benefits:</td>
<td>246</td>
</tr>
<tr>
<td>3-34</td>
<td>Figure 3-24</td>
<td>247</td>
</tr>
<tr>
<td>3-35</td>
<td>Motorika ReoAmbulator</td>
<td>247</td>
</tr>
</tbody>
</table>
Figure 3-25
Motorika ReoAmbulator and Gait Training Devices 249
Figure 3-26
Interactive Motor Technologies Anklebot exoskeletal robotic system Design Principals 250
Figure 3-27
Interactive Motor Technologies Anklebot Walking Improvement 252
Figure 3-28
Interactive Motion Technologies (IMT) InMotion Biomarkers Aid Stroke Recovery 254
Table 3-29
Interactive Motion Technologies (IMT) InMotion Robot Medical Conditions Treated 259
Table 3-30
Interactive Motion Technologies (IMT) InMotion Robot Medical Technology 260
Table 3-31
Interactive Motion Technologies (IMT) Clinical Studies Performed With The InMotion ARM™ 261
Table 3-32
InMotion Robots Research Positioning 262
Figure 3-33
InMotion HAND™ 263
Figure 3-34
InMotion HAND™ Robot 264
Table 3-35
Interactive Motion Technologies (IMT) InMotion HAND™ Robot Functions 266
Table 3-36
Interactive Motion Technologies (IMT) InMotion HAND™ Robot 267
Table 37
Interactive Motion Technologies (IMT) InMotion ARM™ Software Functions 268
Figure 3-38
Interactive Motion Technologies (IMT) 2D Gravity Compensated Therapy Is More Effective Than 3D Spatial Therapy 269
Figure 3-39
Measurements Show Interactive Motion Technologies (IMT) 2D Gravity Compensated Therapy Is More Effective Than 3D Spatial Therapy 270
Table 3-40
Figure 3-56 AlterG Anti-Gravity Treadmill Heals patient Faster 297
Table 3-57 298
Biodex Dynamometer Target Markets 298
Figure 3-58 300
Biodex BioStep® 2 Semi-Recumbent Elliptical 300
Figure 3-59 302
Biodex System 4 Pro 302
Figure 3-60 304
Biodex Balance System SD 304
Figure 3-61 305
Biodex Balance System SD Features 305
Figure 3-62 307
Biodex Pneumex Unweighting Systems 307
Figure 3-63 309
Honda Walk assist 309
Figure 3-64 310
Honda Stride Management 310
Figure 3-65 312
Honda Walk Assist Device Specifications 312
Figure 3-66 313
Honda ASIMO 313
Figure 3-66 314
Honda ASIMO Front Position 314
Figure 3-67 315
Honda ASIMO Dimensions and Weight 315
Figure 3-68 316
Honda ASIMO Intelligence Features 316
Figure 3-69 317
Mobility Research HugN-Go 350 317
Table 3-70 318
Mobility Research HugN-Go 350 Supported Ambulation Device 318

COPYRIGHT 2016, WINTERGREEN RESEARCH, INC. TOC-28
www.wintergreenresearch.com www.wintergreenresearch.com/blog
Telephone 781-863-5078 Email: info@wintergreenresearch.com
Lexington, Massachusetts
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Figure 3-71
Mobility Research HugN-Go 250 319
Figure 3-72
Mobility Research HugN-Go 250 Features 320
Figure 3-73
Mobility Research HugN-Go 100 321
Figure 3-71
Mobility Research HugN-Go 100 Features 322
Figure 3-72
Mobility Research LiteGait Solution for Gait Therapy 323
Table 3-73
Mobility Research LiteGait Advanced Solutions For Gait Therapy 324
Table 3-74
Upper Limb Stroke Rehabilitation Devices 326
Figure 3-75
Tyromotion Diego 335
Table 3-76
Advantages of Rehabilitation Robot Therapy with Tyromotion DIEGO 337
Figure 3-77
Tyromotion Pablo 338
Table 3-78
Tyromotion PABLO Multiball Rehabilitation Robot Functions: Versatility 340
Table 3-79
Tyromotion Pablo Advantages of Hand-Arm-Rehabilitation 341
Figure 3-80
Tyromotion TYMO 342
Table 3-81
Tyromotion TYMO Support Features 344
Figure 3-82
Tyromotion Amadeo® System For Neurological Rehabilitation 346
Table 3-83
Amado® Individual Fingers Or The Entire Hand Rehabilitation Advantages 349
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Figure 3-84 350
Tyromotion AMADEO® - For Neurological Rehabilitation 350
Table 3-85 351
Tyromotion AMADEO® - For Neurological Rehabilitation 351
Table 3-86 352
Tyromotion Amadeo* Benefits 352
Figure 3-87 353
Myomo MyoPro Motion G – Elbow-Wrist-Hand Orthosis 353
Table 3-88 355
MyoPro Motion-G Elbow-Wrist-Hand Orthosis Benefits 355
Table 3-89 356
MyoPro Motion-G Clinical Criteria 356
Table 3-90 358
Myomo mPower 1000 Indications 358
Table 3-91 358
Myomo mPower 1000 Contraindications 358
Table 3-92 365
Focals Meditech BV Models: 365
Table 3-93 366
Focal Meditech BV Assistive Technology Types 366
Table 3-94 367
Focal Meditech BV High End Assistive Technology 367
Table 3-95 368
Focal Meditech Products for Robotic Rehabilitation 368
Figure 3-96 369
ARMin III Robot For Movement Therapy Following Stroke 369
Figure 3-97 372
Kinova RobotArm Jaco 372
Figure 3-98 374
Kinova Jaco Rehabilitation Hand 374
Figure 3-99 375
Invacare Partnered with Kinova to Facilitate Use of the Jaco 375
Figure 3-100 376
Invacare Kinova Robotarm Broad Product Line 376
Figure 3-101 378
InteraXon Muse Headband 378
Figure 3-102 380
InteraXon Finely Calibrated Brain Wave Sensors 380
Figure 3-103 382
InteraXon Measuring Brainwaves 382
Figure 3-104 387
Lower Limb Prosthetic Designed By The Center For Intelligent Mechatronics 387
Figure 3-105 389
Orthocare Innovations Prosthesis 389
Figure 3-106 390
Orthocare Innovations Edison Prosthesis Ankle and Foot 390
Figure 3-107 393
Orthocare Innovations Edison Leg and Ankle 393
Figure 3-108 395
Orthocare Innovations Prosthetic Foot That Adjusts Automatically 395
Figure 3-109 396
Orthocare Innovations Prosthetic Foot That Fits 396
Figure 3-110 397
Orthocare Innovations Prosthetic Foot That Can Be Used for Hiking 397
Figure 3-111 399
Orthocare Innovations 399
Figure 3-112 403
RSL Steeper Pererro+ 403
Table 3-113 404
RSL Steeper Pererro+ Key Features: 404
Figure 3-114 405
RSL Steeper Bebionic’s Standard Glove 405
Figure 3-115 407
RSL Steeper Prosthesis Hand 407
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-116</td>
<td>408</td>
</tr>
<tr>
<td>Touch Bionics’ i-limb Functions</td>
<td>408</td>
</tr>
<tr>
<td>Table 3-117</td>
<td>409</td>
</tr>
<tr>
<td>Touch Bionics i-limb Muscle Triggers</td>
<td>409</td>
</tr>
<tr>
<td>Figure 3-118</td>
<td>413</td>
</tr>
<tr>
<td>Touch Bionics Quick Grips</td>
<td>413</td>
</tr>
<tr>
<td>Figure 3-119</td>
<td>414</td>
</tr>
<tr>
<td>Touch Bionics Prostheses</td>
<td>414</td>
</tr>
<tr>
<td>Figure 3-120</td>
<td>418</td>
</tr>
<tr>
<td>Touch Bionics Active Prostheses</td>
<td>418</td>
</tr>
<tr>
<td>Figure 3-121</td>
<td>421</td>
</tr>
<tr>
<td>Touch Bionics Active prosthesis</td>
<td>421</td>
</tr>
<tr>
<td>Table 3-122</td>
<td>422</td>
</tr>
<tr>
<td>Touch Bionics Products</td>
<td>422</td>
</tr>
<tr>
<td>Table 3-123</td>
<td>424</td>
</tr>
<tr>
<td>RU Robots Core Technologies And Competencies</td>
<td>424</td>
</tr>
<tr>
<td>Figure 3-124</td>
<td>425</td>
</tr>
<tr>
<td>RU Robots Advanced Robotics</td>
<td>425</td>
</tr>
<tr>
<td>Figure 3-126</td>
<td>427</td>
</tr>
<tr>
<td>RU Robots Sophisticated Interactions</td>
<td>427</td>
</tr>
<tr>
<td>Figure 3-127</td>
<td>428</td>
</tr>
<tr>
<td>RU Robots Care-o-bot Large Service Robot</td>
<td>428</td>
</tr>
<tr>
<td>Table 3-128</td>
<td>431</td>
</tr>
<tr>
<td>Instead Technologies Advantages of RoboTherapist3D Therapy:</td>
<td>431</td>
</tr>
<tr>
<td>Figure 3-129</td>
<td>432</td>
</tr>
<tr>
<td>Instead Technologies Robotherapist 3D RT3D Arm</td>
<td>432</td>
</tr>
<tr>
<td>Figure 3-130</td>
<td>432</td>
</tr>
<tr>
<td>Instead Technologies Robotherapist 3D RT3D Cup</td>
<td>432</td>
</tr>
</tbody>
</table>
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Figure 3-131
Instead Technologies RT3D Hand
Figure 3-132
Instead Technologies Robotherapist 3D RT3D Ring Structure
Figure 3-133
Instead Technologies Ultrasound Breast Volumes. BreastExplorer
Figure 3-134
Instead Technologies Ultrasound Breast Volumes BreastExplorer Handheld Device
Figure 3-135
Instead Technologies Ultrasound Breast Volumes BreastExplorer Screen Display
Table 3-136
Instead Technologies Research:
Table 3-137
Instead Technologies Consultancy Services:
Figure 3-138
Esko Technology
Figure 3-139
Ekso Bionics Gait Training
Figure 3-140
Ekso Bionics Gait Training Functions
Table 3-141
Ekso Gait Training Exoskeleton Functions

COPYRIGHT 2016, WINTERGREEN RESEARCH, INC.
www.wintergreenresearch.com
Telephone 781-863-5078
Lexington, Massachusetts

TOC-33
www.wintergreenresearch.com/blog
Email: info@wintergreenresearch.com
<table>
<thead>
<tr>
<th>Table 3-142</th>
<th>452</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekso Gait Training Exoskeleton Functions</td>
<td>452</td>
</tr>
<tr>
<td>Figure 3-143</td>
<td>453</td>
</tr>
<tr>
<td>Ekso Bionics Step Support System</td>
<td>453</td>
</tr>
<tr>
<td>Table 3-144</td>
<td>454</td>
</tr>
<tr>
<td>Ekso Bionics Operation Modes</td>
<td>454</td>
</tr>
<tr>
<td>3.26.3 Ekso Bionics</td>
<td>455</td>
</tr>
<tr>
<td>Figure 3-145</td>
<td>456</td>
</tr>
<tr>
<td>Figure 3-146</td>
<td>457</td>
</tr>
<tr>
<td>Ekso Bionics Bionic Suit</td>
<td>457</td>
</tr>
<tr>
<td>Figure 3-147</td>
<td>460</td>
</tr>
<tr>
<td>Rewalk-Robotics-Personal Support</td>
<td>460</td>
</tr>
<tr>
<td>Figure 3-148</td>
<td>461</td>
</tr>
<tr>
<td>Permobil F5 Corpus VS Stand Sequence</td>
<td>461</td>
</tr>
<tr>
<td>Figure 3-149</td>
<td>462</td>
</tr>
<tr>
<td>Karman Xo-202 Standing Wheelchair Power Stand Power Drive</td>
<td>462</td>
</tr>
<tr>
<td>Table 3-150</td>
<td>464</td>
</tr>
<tr>
<td>Karman Xo-202 Standing Wheelchair Power Stand Power Drive Features</td>
<td>464</td>
</tr>
<tr>
<td>Figure 3-151</td>
<td>465</td>
</tr>
<tr>
<td>Berkeley Robotics Austin</td>
<td>465</td>
</tr>
<tr>
<td>Figure 3-152</td>
<td>467</td>
</tr>
<tr>
<td>Berkley Robotics and Human Engineering Laboratory ExoHiker</td>
<td>467</td>
</tr>
<tr>
<td>Figure 3-153</td>
<td>469</td>
</tr>
<tr>
<td>Berkley Robotics and Human Engineering Laboratory ExoClimber</td>
<td>469</td>
</tr>
<tr>
<td>Table 3-154</td>
<td>470</td>
</tr>
<tr>
<td>Berkley Robotics and Human Engineering Laboratory Exoskeleton</td>
<td>470</td>
</tr>
<tr>
<td>Figure 3-155</td>
<td>472</td>
</tr>
<tr>
<td>Reha-Stim Gait Trainer GT I</td>
<td>472</td>
</tr>
<tr>
<td>Figure 3-156</td>
<td>474</td>
</tr>
<tr>
<td>Reha-Stim Gait Trainer Improves The Patient Ability To Walk Through Continuous Practice</td>
<td>474</td>
</tr>
<tr>
<td>Figure 3-157</td>
<td>477</td>
</tr>
<tr>
<td>Reha-Stim Bi-Manu-Track Hand and Wrist Rehabilitation Device</td>
<td>477</td>
</tr>
</tbody>
</table>
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Figure 3-158
Reha-Stim Gait Trainer GT I Harness 478
Figure 3-159
Motorized Physiotherapy Controlled Mobilization Goals of phase 1 rehabilitation 485
Table 3-160
Continuous Passive Motion (CPM) Device Benefits Following Knee Arthroplasty 486
Figure 3-161
Chattanooga CPM 487
Table 3-162
Chattanooga Active-K Functions 488
Figure 3-163
DJO Chattanooga Active-K 489
Figure 3-164
Chattanooga Active-K Motorized Physiotherapy Unit Integration Benefits 490
Figure 3-165
Chattanooga Active-K Motorized Physiotherapy Controlled Mobilization 491
Figure 3-166
Chattanooga Active-K Motorized Physiotherapy CPM (Continuous Passive Motion 492
Figure 3-167
Chattanooga Active-K Motorized Physiotherapy Controller 493
Figure 3-168
DJO Chattanooga Active-K Features:
Table 3-169
Chattanooga Active-K Motorized Physiotherapy Therapeutic Modes 495
Figure 3-170
Chattanooga Active-K Motorized Physiotherapy Therapeutic Benefits 496
Figure 3-171
Chattanooga Optiflex® 3 Knee Continuous Passive Motion (CPM) Device 497
Table 3-172
Chattanooga Optiflex Knee CPM Unique Features:
Table 3-173
Chattanooga Optiflex CPM Use While Resting 499
Table 3-174	Chattanooga Optiflex Knee CPM Standard Functions:	500
Table 3-175	Chattanooga Optiflex® 3 Knee Continuous Passive Motion (CPM) Specifications:	501
Figure 3-176	Chattanooga Optiflex® 3 Ankle Continuous Passive Motion (CPM)	502
Table 3-177	Chattanooga Optiflex Ankle CPM Features:	503
Table 3-178	Chattanooga Optiflex Ankle CPM Specifications:	504
Table 3-179	Chattanooga Optiflex Shoulder CPM Features:	505
Figure 3-180	Chattanooga Optiflex® 3 Elbow Continuous Passive Motion (CPM)	506
Table 3-181	Chattanooga Optiflex Elbow CPM Features:	507
Figure 3-182	Chattanooga Optiflex® 3 Elbow Continuous Passive Motion (CPM)	508
Table 3-183	Chattanooga Optiflex® 3 Elbow Continuous Passive Motion (CPM) Specifications:	508
Figure 3-184	Chattanooga Optiflex® 3 Elbow Continuous Passive Motion (CPM) Flexion	509
Figure 3-185	Chattanooga OptiFlex® S Shoulder Continuous Passive Motion (CPM)	510
Table 3-186	Chattanooga Optiflex Shoulder CPM Features:	511
Figure 3-187	Paterson Kinetec Knee CPM	513
Table 3-188	Paterson Kinetec Spectra Knee CPM Features:	514
Table 3-189	Paterson Kinetec Spectra Knee CPM Treatment Modes	515
Figure 3-190 516
Global Medical CPM device 516
Table 3-191 517
Global Medical CPM device Features 517
Figure 3-192 518
Global Medical Handheld Controller 518
Figure 3-193 521
Furniss Corporation Model 1800™ Knee CPM 521
Table 3-194 523
Furniss Corporation CPM 1800 Features 523
Figure 3-195 524
Furniss Corporation CP 524
Figure 3-196 525
Furniss Corporation Phoenix Model 1850 Knee CPM 525
Figure 3-197 526
Furniss Corporation Continuous Passive Motion DC2480 Knee CPM 526
Figure 3-198 529
Danniflex 480 Lower Limb CPM Unit 529
Table 3-199 530
Danniflex Lower Limb CPM Features 530
Figure 3-200 531
Rehab-Robotics Company Hand of Hope Therapeutic Device 531
Figure 3-201 532
Rehab-Robotics Repetitive Training System 532
Table 3-202 534
Rehab-Robotics Hand of Hope Movement Control 534
Figure 3-203 536
Rehab-Robotics Modes Provide Different Levels Of Assistance In Movement Of Patient’s Hand 536
Figure 3-204 537
Rehab-Robotics Different Modes 537
Figure 3-205 538
Rehab-Robotics Arm Training 538
Table 3-206
Rehab-Robotics Hand of Hope Modes
Figure 3-207
Bioxtreme Robotic Rehabilitation System
Figure 3-208
Corbys Rehabilitation Robot
Figure 3-209
Corbys Rehabilitation System
Figure 3-210
Corbys Rehabilitation Orthosis Actuation Test Stand
Figure 3-211
Corbys Mobile Robotic Gait Rehabilitation System
Figure 3-212
Swtotek Leg Orthosis of Motion Maker
Table 4-1
Rehabilitation Robot System Concerns Addressed During System Design
Table 4-5
Rehabilitation Robots Software Functions
Table 4-6
InMotion Robots Immediate Interactive Response Sets
Table 4-7
HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Benefits
Table 4-8
HEXORR: Hand Exoskeleton Rehabilitation Robot Technology Monitoring
Table 4-9
HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
Table 4-10
HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
Figure 4-11
Hand Spring Operated Movement Enhancer
Figure 4-12
Hand Spring Robot Operated Movement Enhancer
Table 5-1 573
AlterG Anti-Gravity Treadmills Features 573
Built On Differential Air Pressure Technology 573
Table 5-2 574
AlterG Anti-Gravity Treadmills Target Markets 574
Table 5-3 575
AlterG Product Positioning 575
Figure 5-4 577
Selected US Regional AlterG M300 Customer Clusters 577
Figure 5-5 582
AlterG / Tibion Bionic Leg 582
Figure 5-6 584
Afetech ZeroG Gait & Balance 584
Figure 5-7 585
Aretech Rehabilitation Robot 585
Table 5-8 588
Berkley Robotics and Human Engineering Laboratory Research Work 588
Table 5-9 589
Berkley Robotics and Human Engineering Laboratory Research Work 589
Figure 5-10 602
Bioxtreme Robotics Rehabilitation For Cerebral Stroke Or Traumatic Brain Injuries (TBI) On Error Enhancement Technology 602
Figure 5-11 603
Breg Home Therapy CPM Continuous Passive Motion Practice Kits 603
Table 5-12 613
DJO Rehabilitation Product Target Markets 613
Table 5-13 614
DJO Rehabilitation Product Targets Care Givers 614
Figure 5-14 629
Ekso Bionics Regional Presence 629
Table 5-15 641
FOCAL Meditech BV Products: 641
Table 5-16 642
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Focal Meditech BV Collaborating Partners: 642
Table 5-17 647
Hocoma Robotic Rehabilitation Used In Rehabilitation Medicine: 647
Table 5-18 648
Hocoma Therapy Solutions Treatments 648
Table 5-19 653
Honda’s Principal Automobile Products 653
Figure 5-20 655
Honda Walk Assist 655
Figure 5-21 657
Honda Motors Prototype Stride Management Motorized Assist Device 657
Table 5-22 659
Instead Technologies Research: 659
Table 5-23 660
Instead Technologies Consultancy Services: 660
Table 3-24 668
iRobot / InTouch Health RP-VITA 668
Figure 3-25 669
iRobot / InTouch Health RP-VITA 669
Table 5-26 671
Karman DME Internet Authorized Dealers 671
Figure 5-27 675
Mobility Research LiteGait Device 675
Figure 5-28 693
Reha G-EO Robotic Rehabilitation Device 693
Table 5-29 695
Reha Technology G-EO System 695
Table 5-30 701
RUR Key Market Areas For Robotic Technologies 701
Figure 3-31 702
Secom Co.Ltd MySpoon Manual Mode 702
Table 3-32 703
Rehabilitation Robots: Table of Contents and List of Tables and Figures

Secom Co.Ltd MySpoon Features in Manual Mode
Figure 3-33
Secom Co.Ltd MySpoon Semi-automatic Mode
Secom Co.Ltd MySpoon Semi-automatic Mode

<table>
<thead>
<tr>
<th>Table 3</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secom Co.Ltd MySpoon Semi-automatic Mode</td>
<td>705</td>
</tr>
<tr>
<td>Figure 3-35</td>
<td></td>
</tr>
<tr>
<td>Secom Co.Ltd MySpoon Automatic Mode</td>
<td>706</td>
</tr>
<tr>
<td>Table 3-36</td>
<td>707</td>
</tr>
<tr>
<td>Secom Co.Ltd MySpoon Automatic Mode</td>
<td>707</td>
</tr>
<tr>
<td>Table 5-37</td>
<td>708</td>
</tr>
<tr>
<td>Sunrise Medical Products</td>
<td></td>
</tr>
<tr>
<td>Figure 3-38</td>
<td>708</td>
</tr>
<tr>
<td>Sunrise Medical Whitmyer Biomechanics Head Support</td>
<td></td>
</tr>
<tr>
<td>Table 3-39</td>
<td>710</td>
</tr>
<tr>
<td>Sunrise Medical Whitmyer Biomechanics Headrest Features</td>
<td>711</td>
</tr>
<tr>
<td>Figure 5-40</td>
<td>711</td>
</tr>
<tr>
<td>Touch Bionics Prosthetic Technologies</td>
<td>713</td>
</tr>
<tr>
<td>Figure 5-41</td>
<td>714</td>
</tr>
</tbody>
</table>

Copyright 2016, Wintergreen Research, Inc.

www.wintergreenresearch.com www.wintergreenresearch.com/blog
Telephone 781-863-5078 Email: info@wintergreenresearch.com
Lexington, Massachusetts
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyromotion GmbH Employee Group</td>
<td>714</td>
</tr>
<tr>
<td>Table 5-42</td>
<td>716</td>
</tr>
<tr>
<td>Tyromotion GmbH Pablo®Plus System Strengthens The Upper Extremity Hand,</td>
<td>716</td>
</tr>
<tr>
<td>Arm And Wrist Functions</td>
<td></td>
</tr>
<tr>
<td>Table 5-43</td>
<td>717</td>
</tr>
<tr>
<td>Tyromotion Network</td>
<td>717</td>
</tr>
</tbody>
</table>